cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A143405 Number of forests of labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels, also row sums of A143395, A143396 and A143397.

Original entry on oeis.org

1, 1, 4, 17, 89, 552, 3895, 30641, 265186, 2497551, 25373097, 276105106, 3199697517, 39297401197, 509370849148, 6943232742493, 99217486649933, 1482237515573624, 23093484367004715, 374416757914118941, 6304680593346141746, 110063311977033807187
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Comments

a(n) is the number of the partitions of an n-set where each block is endowed with a nonempty subset. - Emanuele Munarini, Sep 15 2016

Examples

			a(2) = 4, because there are 4 forests for 2 labels: {1,2}, {1}{2}, {1}<-2, {2}<-1.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(add(binomial(n, t)*Stirling2(t, k)*k^(n-t), t=k..n), k=0..n):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*(2^j-1), j=1..n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 05 2019
  • Mathematica
    CoefficientList[Series[Exp[Exp[t] (Exp[t] - 1)], {t, 0, 12}], t] Range[0, 12]! (* Emanuele Munarini, Sep 15 2016 *)
    Table[Sum[Binomial[n, k] 2^k BellB[k] BellB[n - k, -1], {k, 0, n}], {n, 0, 12}] (* Emanuele Munarini, Sep 15 2016 *)
    Table[Sum[BellY[n, k, 2^Range[n] - 1], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    a(n) = sum(k=0, n, k!*sum(j=0, k\2, 1/(j!*(k-2*j)!))*stirling(n, k, 2)); \\ Seiichi Manyama, May 14 2022

Formula

a(n) = Sum_{k=0..n} Sum_{t=k..n} C(n,t) * Stirling2(t,k)*k^(n-t).
a(n) = Sum_{k=0..n} Sum_{t=0..k} C(n,k) * Stirling2(k,t)*t^(n-k).
a(n) = Sum_{k=0..n} Sum_{t=0..k} C(n,k-t) * Stirling2(n-(k-t),t)*t^(k-t).
E.g.f.: exp(exp(x)*(exp(x)-1)). - Vladeta Jovovic, Dec 08 2008
a(n) = sum(binomial(n,k)*2^k*bell(k)*S(n-k,-1),k=0..n), where bell(n) are the Bell numbers (A000110) and S(n,x) = sum(Stirling2(n,k)*x^k,k=0..n) are the Stirling (or exponential) polynomials. - Emanuele Munarini, Sep 15 2016
Identity: sum(binomial(n,k)*a(k)*bell(n-k),k=0..n) = 2^n*bell(n). - Emanuele Munarini, Sep 15 2016
a(n) = Sum_{k=0..n} A047974(k) * Stirling2(n,k). - Seiichi Manyama, May 14 2022
a(n) ~ exp(exp(2*z) - exp(z) - n) * (n/z)^(n + 1/2) / sqrt(2*(1 + 2*z)*exp(2*z) - (1 + z)*exp(z)), where z = LambertW(n)/2 - 1/(1 + 2/LambertW(n) - 4 * n^(1/2) * (1 + LambertW(n)) / LambertW(n)^(3/2)). - Vaclav Kotesovec, Jul 03 2022
a(n) ~ 2^n * n^n / (sqrt(1 + LambertW(n)) * LambertW(n)^n * exp(n + 1/8 - n/LambertW(n) + sqrt(n/LambertW(n)))). - Vaclav Kotesovec, Jul 08 2022

A273652 Number of forests of labeled rooted trees of height at most 1, with n labels, two of which are used for root nodes and any root may contain >= 1 labels.

Original entry on oeis.org

2, 9, 30, 90, 255, 693, 1820, 4644, 11565, 28215, 67650, 159822, 372827, 860265, 1966200, 4456584, 10027161, 22413483, 49807550, 110100690, 242221287, 530579709, 1157628180, 2516582700, 5452595525, 11777605983, 25367150970, 54492397974, 116769423795
Offset: 2

Views

Author

Alois P. Heinz, May 27 2016

Keywords

Crossrefs

Column k=2 of A143396.

Programs

  • Maple
    a:= n-> binomial(n,2)*add(Stirling2(2,j)*j^(n-2), j=0..2):
    seq(a(n), n=2..40);

Formula

E.g.f.: x^2/2! * Sum_{j=0..2} Stirling2(2,j)*exp(x)^j.
a(n) = C(n,2) * Sum_{j=0..2} Stirling2(2,j) * j^(n-2).

A273653 Number of forests of labeled rooted trees of height at most 1, with n labels, three of which are used for root nodes and any root may contain >= 1 labels.

Original entry on oeis.org

5, 40, 220, 1040, 4550, 19040, 77448, 308640, 1209450, 4668400, 17766892, 66718288, 247397150, 906584000, 3285842960, 11788924992, 41902786770, 147668053200, 516315206260, 1792304871280, 6180666260230, 21184488791840, 72205377800600, 244837696095200
Offset: 3

Views

Author

Alois P. Heinz, May 27 2016

Keywords

Crossrefs

Column k=3 of A143396.

Programs

  • Maple
    a:= n-> binomial(n,3)*add(Stirling2(3,j)*j^(n-3), j=0..3):
    seq(a(n), n=3..40);

Formula

E.g.f.: x^3/3! * Sum_{j=0..3} Stirling2(3,j)*exp(x)^j.
a(n) = C(n,3) * Sum_{j=0..3} Stirling2(3,j) * j^(n-3).

A273654 Number of forests of labeled rooted trees of height at most 1, with n labels, four of which are used for root nodes and any root may contain >= 1 labels.

Original entry on oeis.org

15, 185, 1485, 9905, 59850, 341082, 1872990, 10032990, 52814025, 274436305, 1411449039, 7195628895, 36390053700, 182622509860, 909578754540, 4496410556268, 22062707386875, 107464431586995, 519700280676885, 2495827315731365, 11905791978208590, 56429414876395550
Offset: 4

Views

Author

Alois P. Heinz, May 27 2016

Keywords

Crossrefs

Column k=4 of A143396.

Programs

  • Maple
    a:= n-> binomial(n,4)*add(Stirling2(4,j)*j^(n-4), j=0..4):
    seq(a(n), n=4..40);

Formula

E.g.f.: x^4/4! * Sum_{j=0..4} Stirling2(4,j)*exp(x)^j.
a(n) = C(n,4) * Sum_{j=0..4} Stirling2(4,j) * j^(n-4).

A273655 Number of forests of labeled rooted trees of height at most 1, with n labels, five of which are used for root nodes and any root may contain >= 1 labels.

Original entry on oeis.org

52, 906, 9891, 87416, 686826, 5020092, 35006202, 236460312, 1562226237, 10158790642, 65294141913, 415967090448, 2631510433188, 16551428673528, 103578621308388, 645186720537744, 4000912828433199, 24700465510596414, 151810205132056779, 928768921758036744
Offset: 5

Views

Author

Alois P. Heinz, May 27 2016

Keywords

Crossrefs

Column k=5 of A143396.

Programs

  • Maple
    a:= n-> binomial(n,5)*add(Stirling2(5,j)*j^(n-5), j=0..5):
    seq(a(n), n=5..40);

Formula

E.g.f.: x^5/5! * Sum_{j=0..5} Stirling2(5,j)*exp(x)^j.
a(n) = C(n,5) * Sum_{j=0..5} Stirling2(5,j) * j^(n-5).

A273656 Number of forests of labeled rooted trees of height at most 1, with n labels, six of which are used for root nodes and any root may contain >= 1 labels.

Original entry on oeis.org

203, 4718, 66808, 750120, 7370580, 66562188, 568136184, 4663350120, 37228965774, 291297376370, 2245876801168, 17126594554160, 129527848747752, 973416393927768, 7278979868039760, 54211596845506800, 402386221073227314, 2977842560384800878, 21977111826224423176
Offset: 6

Views

Author

Alois P. Heinz, May 27 2016

Keywords

Crossrefs

Column k=6 of A143396.

Programs

  • Maple
    a:= n-> binomial(n,6)*add(Stirling2(6,j)*j^(n-6), j=0..6):
    seq(a(n), n=6..40);

Formula

E.g.f.: x^6/6! * Sum_{j=0..6} Stirling2(6,j)*exp(x)^j.
a(n) = C(n,6) * Sum_{j=0..6} Stirling2(6,j) * j^(n-6).

A273657 Number of forests of labeled rooted trees of height at most 1, with n labels, seven of which are used for root nodes and any root may contain >= 1 labels.

Original entry on oeis.org

877, 26104, 463212, 6409320, 76595310, 832521096, 8480449692, 82506827832, 776400941745, 7128606776720, 64261876786536, 571350882111984, 5026991629995036, 43878686837771760, 380672326962043560, 3287071510635218064, 28280022744131688519, 242602886107926614952
Offset: 7

Views

Author

Alois P. Heinz, May 27 2016

Keywords

Crossrefs

Column k=7 of A143396.

Programs

  • Maple
    a:= n-> binomial(n,7)*add(Stirling2(7,j)*j^(n-7), j=0..7):
    seq(a(n), n=7..40);

Formula

E.g.f.: x^7/7! * Sum_{j=0..7} Stirling2(7,j)*exp(x)^j.
a(n) = C(n,7) * Sum_{j=0..7} Stirling2(7,j) * j^(n-7).

A273658 Number of forests of labeled rooted trees of height at most 1, with n labels, eight of which are used for root nodes and any root may contain >= 1 labels.

Original entry on oeis.org

4140, 153063, 3315645, 55239525, 786082275, 10081916559, 120278261103, 1361959159275, 14838761544750, 157056039953670, 1626124163724918, 16555067600440590, 166368479811851850, 1655233308679110930, 16341232769733507570, 160366537782578273850
Offset: 8

Views

Author

Alois P. Heinz, May 27 2016

Keywords

Crossrefs

Column k=8 of A143396.

Programs

  • Maple
    a:= n-> binomial(n,8)*add(Stirling2(8,j)*j^(n-8), j=0..8):
    seq(a(n), n=8..40);

Formula

E.g.f.: x^8/8! * Sum_{j=0..8} Stirling2(8,j)*exp(x)^j.
a(n) = C(n,8) * Sum_{j=0..8} Stirling2(8,j) * j^(n-8).

A273659 Number of forests of labeled rooted trees of height at most 1, with n labels, nine of which are used for root nodes and any root may contain >= 1 labels.

Original entry on oeis.org

21147, 948280, 24564100, 483787480, 8061693640, 120120836836, 1653807555400, 21489660580960, 267385444371760, 3218688299529560, 37768351403903120, 434451231603262640, 4920317819371507280, 55047363589643246360, 609969295304994614000, 6708182596868603027936
Offset: 9

Views

Author

Alois P. Heinz, May 27 2016

Keywords

Crossrefs

Column k=9 of A143396.

Programs

  • Maple
    a:= n-> binomial(n,9)*add(Stirling2(9,j)*j^(n-9), j=0..9):
    seq(a(n), n=9..40);

Formula

E.g.f.: x^9/9! * Sum_{j=0..9} Stirling2(9,j)*exp(x)^j.
a(n) = C(n,9) * Sum_{j=0..9} Stirling2(9,j) * j^(n-9).

A273660 Number of forests of labeled rooted trees of height at most 1, with n labels, ten of which are used for root nodes and any root may contain >= 1 labels.

Original entry on oeis.org

115975, 6188545, 188526162, 4324211606, 83234980829, 1422697691415, 22336690031656, 329296289467288, 4628083121855622, 62687799439000450, 824939949711312292, 10611095747493196956, 134039591449028959694, 1668916223557034160170, 20541239452587941670792
Offset: 10

Views

Author

Alois P. Heinz, May 27 2016

Keywords

Crossrefs

Column k=10 of A143396.

Programs

  • Maple
    a:= n-> binomial(n,10)*add(Stirling2(10,j)*j^(n-10), j=0..10):
    seq(a(n), n=10..40);

Formula

E.g.f.: x^10/10! * Sum_{j=0..10} Stirling2(10,j)*exp(x)^j.
a(n) = C(n,10) * Sum_{j=0..10} Stirling2(10,j) * j^(n-10).
Showing 1-10 of 11 results. Next