A143405
Number of forests of labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels, also row sums of A143395, A143396 and A143397.
Original entry on oeis.org
1, 1, 4, 17, 89, 552, 3895, 30641, 265186, 2497551, 25373097, 276105106, 3199697517, 39297401197, 509370849148, 6943232742493, 99217486649933, 1482237515573624, 23093484367004715, 374416757914118941, 6304680593346141746, 110063311977033807187
Offset: 0
a(2) = 4, because there are 4 forests for 2 labels: {1,2}, {1}{2}, {1}<-2, {2}<-1.
-
a:= n-> add(add(binomial(n, t)*Stirling2(t, k)*k^(n-t), t=k..n), k=0..n):
seq(a(n), n=0..30);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*(2^j-1), j=1..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Oct 05 2019
-
CoefficientList[Series[Exp[Exp[t] (Exp[t] - 1)], {t, 0, 12}], t] Range[0, 12]! (* Emanuele Munarini, Sep 15 2016 *)
Table[Sum[Binomial[n, k] 2^k BellB[k] BellB[n - k, -1], {k, 0, n}], {n, 0, 12}] (* Emanuele Munarini, Sep 15 2016 *)
Table[Sum[BellY[n, k, 2^Range[n] - 1], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
a(n) = sum(k=0, n, k!*sum(j=0, k\2, 1/(j!*(k-2*j)!))*stirling(n, k, 2)); \\ Seiichi Manyama, May 14 2022
A273652
Number of forests of labeled rooted trees of height at most 1, with n labels, two of which are used for root nodes and any root may contain >= 1 labels.
Original entry on oeis.org
2, 9, 30, 90, 255, 693, 1820, 4644, 11565, 28215, 67650, 159822, 372827, 860265, 1966200, 4456584, 10027161, 22413483, 49807550, 110100690, 242221287, 530579709, 1157628180, 2516582700, 5452595525, 11777605983, 25367150970, 54492397974, 116769423795
Offset: 2
-
a:= n-> binomial(n,2)*add(Stirling2(2,j)*j^(n-2), j=0..2):
seq(a(n), n=2..40);
A273653
Number of forests of labeled rooted trees of height at most 1, with n labels, three of which are used for root nodes and any root may contain >= 1 labels.
Original entry on oeis.org
5, 40, 220, 1040, 4550, 19040, 77448, 308640, 1209450, 4668400, 17766892, 66718288, 247397150, 906584000, 3285842960, 11788924992, 41902786770, 147668053200, 516315206260, 1792304871280, 6180666260230, 21184488791840, 72205377800600, 244837696095200
Offset: 3
-
a:= n-> binomial(n,3)*add(Stirling2(3,j)*j^(n-3), j=0..3):
seq(a(n), n=3..40);
A273654
Number of forests of labeled rooted trees of height at most 1, with n labels, four of which are used for root nodes and any root may contain >= 1 labels.
Original entry on oeis.org
15, 185, 1485, 9905, 59850, 341082, 1872990, 10032990, 52814025, 274436305, 1411449039, 7195628895, 36390053700, 182622509860, 909578754540, 4496410556268, 22062707386875, 107464431586995, 519700280676885, 2495827315731365, 11905791978208590, 56429414876395550
Offset: 4
-
a:= n-> binomial(n,4)*add(Stirling2(4,j)*j^(n-4), j=0..4):
seq(a(n), n=4..40);
A273655
Number of forests of labeled rooted trees of height at most 1, with n labels, five of which are used for root nodes and any root may contain >= 1 labels.
Original entry on oeis.org
52, 906, 9891, 87416, 686826, 5020092, 35006202, 236460312, 1562226237, 10158790642, 65294141913, 415967090448, 2631510433188, 16551428673528, 103578621308388, 645186720537744, 4000912828433199, 24700465510596414, 151810205132056779, 928768921758036744
Offset: 5
-
a:= n-> binomial(n,5)*add(Stirling2(5,j)*j^(n-5), j=0..5):
seq(a(n), n=5..40);
A273656
Number of forests of labeled rooted trees of height at most 1, with n labels, six of which are used for root nodes and any root may contain >= 1 labels.
Original entry on oeis.org
203, 4718, 66808, 750120, 7370580, 66562188, 568136184, 4663350120, 37228965774, 291297376370, 2245876801168, 17126594554160, 129527848747752, 973416393927768, 7278979868039760, 54211596845506800, 402386221073227314, 2977842560384800878, 21977111826224423176
Offset: 6
-
a:= n-> binomial(n,6)*add(Stirling2(6,j)*j^(n-6), j=0..6):
seq(a(n), n=6..40);
A273657
Number of forests of labeled rooted trees of height at most 1, with n labels, seven of which are used for root nodes and any root may contain >= 1 labels.
Original entry on oeis.org
877, 26104, 463212, 6409320, 76595310, 832521096, 8480449692, 82506827832, 776400941745, 7128606776720, 64261876786536, 571350882111984, 5026991629995036, 43878686837771760, 380672326962043560, 3287071510635218064, 28280022744131688519, 242602886107926614952
Offset: 7
-
a:= n-> binomial(n,7)*add(Stirling2(7,j)*j^(n-7), j=0..7):
seq(a(n), n=7..40);
A273658
Number of forests of labeled rooted trees of height at most 1, with n labels, eight of which are used for root nodes and any root may contain >= 1 labels.
Original entry on oeis.org
4140, 153063, 3315645, 55239525, 786082275, 10081916559, 120278261103, 1361959159275, 14838761544750, 157056039953670, 1626124163724918, 16555067600440590, 166368479811851850, 1655233308679110930, 16341232769733507570, 160366537782578273850
Offset: 8
-
a:= n-> binomial(n,8)*add(Stirling2(8,j)*j^(n-8), j=0..8):
seq(a(n), n=8..40);
A273659
Number of forests of labeled rooted trees of height at most 1, with n labels, nine of which are used for root nodes and any root may contain >= 1 labels.
Original entry on oeis.org
21147, 948280, 24564100, 483787480, 8061693640, 120120836836, 1653807555400, 21489660580960, 267385444371760, 3218688299529560, 37768351403903120, 434451231603262640, 4920317819371507280, 55047363589643246360, 609969295304994614000, 6708182596868603027936
Offset: 9
-
a:= n-> binomial(n,9)*add(Stirling2(9,j)*j^(n-9), j=0..9):
seq(a(n), n=9..40);
A273660
Number of forests of labeled rooted trees of height at most 1, with n labels, ten of which are used for root nodes and any root may contain >= 1 labels.
Original entry on oeis.org
115975, 6188545, 188526162, 4324211606, 83234980829, 1422697691415, 22336690031656, 329296289467288, 4628083121855622, 62687799439000450, 824939949711312292, 10611095747493196956, 134039591449028959694, 1668916223557034160170, 20541239452587941670792
Offset: 10
-
a:= n-> binomial(n,10)*add(Stirling2(10,j)*j^(n-10), j=0..10):
seq(a(n), n=10..40);
Showing 1-10 of 11 results.
Comments