A143395
Triangle read by rows: T(n,k) = number of forests of k labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 7, 9, 1, 0, 15, 55, 18, 1, 0, 31, 285, 205, 30, 1, 0, 63, 1351, 1890, 545, 45, 1, 0, 127, 6069, 15421, 7770, 1190, 63, 1, 0, 255, 26335, 116298, 95781, 24150, 2282, 84, 1, 0, 511, 111645, 830845, 1071630, 416451, 62370, 3990, 108, 1
Offset: 0
T(3,2) = 9: {1}{2}<-3, {1}{3}<-2, {1}{2,3}, {2}{1}<-3, {2}{3}<-1, {2}{1,3}, {3}{1}<-2, {3}{2}<-1, {3}{1,2}.
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 7, 9, 1;
0, 15, 55, 18, 1;
0, 31, 285, 205, 30, 1;
0, 63, 1351, 1890, 545, 45, 1;
0, 127, 6069, 15421, 7770, 1190, 63, 1;
...
From _Peter Bala_, Jan 07 2015: (Start)
T(4,2) = 55: There are 7 partitions of the set {1,2,3,4} into 2 blocks. For the 3 set partitions of the type {a,b}{c,d} we can choose a nonempty subset from each block in one of 3*3 ways giving 3*3*3 = 27 possibilities in all. The remaining 4 set partitions of {1,2,3,4} into 2 blocks are of the form {a,b,c}{d} and we can choose a nonempty subset from each block in 7*1 ways giving 4*7*1 = 28 possible choices. Thus in total T(4,2) = 27 + 28 = 55.
Recurrence equation example:
T(4,2) = sum {j = 1..3} (2^(4-j) - 1)*binomial(3,j)*T(j,1) = 7*3*1 + 3*3*3 + 1*1*7 = 55.
Connection constants:
Row 3 = [0, 7, 9, 1]. Hence x^3 = 7*x + 9*x*(x - 3) + x*(x - 4)*(x - 5); Row 4 = [0, 15, 55, 18, 1]. Hence x^4 = 15*x + 55*x*(x - 3) + 18*x*(x - 4)*(x - 5) + x*(x - 5)*(x - 6)*(x - 7).
With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/ 1 \/1 \/1 \ / 1 \
| 3 1 ||0 1 ||0 1 | | 3 1 |
| 7 6 1 ||0 3 1 ||0 0 1 |... = | 7 9 1 |
|15 21 9 1 ||0 7 6 1 ||0 0 3 1 | |15 55 18 1 |
|... ||0 15 21 9 1||0 0 7 6 1| |... |
|... ||... ||... | | |
(End)
- Alois P. Heinz, Rows n = 0..140, flattened
- Eli Bagno, Riccardo Biagioli, and David Garber, Some identities involving second kind Stirling numbers of types B and D, arXiv:1901.07830 [math.CO], 2019.
- Peter Bala, A 3 parameter family of generalized Stirling numbers
- Takao Komatsu, Eli Bagno, and David Garber, A q,r-analogue of poly-Stirling numbers of second kind with combinatorial applications, arXiv:2209.06674 [math.CO], 2022.
- Index entries for sequences related to rooted trees
-
[[(&+[Binomial(n,j)*StirlingSecond(j,k)*k^(n-j): j in [k..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 07 2019
-
T:= (n, k)-> add(binomial(n,t)*Stirling2(t,k)*k^(n-t), t=k..n):
seq(seq(T(n, k), k=0..n), n=0..11);
-
t[0, 0]=1; t[n_, k_]:= SeriesCoefficient[Exp[y*Exp[x]*(Exp[x]-1)], {x, 0, n}, {y, 0, k}]*n!; Table[t[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Dec 05 2013, after Vladeta Jovovic *)
Table[If[n==k==0, 1, If[k==0, 0, Sum[Binomial[n, j]*StirlingS2[j, k]* k^(n-j), {j,k,n}]]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 07 2019 *)
-
{T(n,k) = sum(j=k, n, binomial(n,j)*stirling(j,k,2)*k^(n-j))};
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 07 2019
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: 2^(n+1)-1, 10) # Peter Luschny, Jan 18 2016
A055882
a(n) = 2^n*Bell(n). E.g.f.: exp(exp(2*x)-1).
Original entry on oeis.org
1, 2, 8, 40, 240, 1664, 12992, 112256, 1059840, 10827264, 118758400, 1389711360, 17258893312, 226463227904, 3127694491648, 45316785602560, 686826595745792, 10861264214949888, 178802342273744896, 3058036745204924416, 54236710945813430272, 995874184692762673152
Offset: 0
-
[2^n*Bell(n): n in [0..20]]; // Vincenzo Librandi, Sep 19 2014
-
seq(add(binomial(n, k)*(bell(n)), k=0..n), n=0..18); # Zerinvary Lajos, Dec 01 2006
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j) *binomial(n-1, j-1)*2^j, j=1..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Oct 04 2019
-
nn=20;a=Exp[2x]-1;Range[0,nn]!CoefficientList[Series[Exp[a],{x,0,nn}],x] (* Geoffrey Critzer, Sep 16 2012 *)
Table[2^n BellB[n], {n, 0, 20}] (* Vincenzo Librandi, Sep 19 2014 *)
-
# Python 3.2 or higher required
from itertools import accumulate
A055882_list, blist, b, n2 = [1,2], [1], 1, 4
for _ in range(2, 201):
blist = list(accumulate([b]+blist))
b = blist[-1]
A055882_list.append(b*n2)
n2 *= 2 # Chai Wah Wu, Sep 19 2014
A143396
Triangle T(n,k) = number of forests of labeled rooted trees of height at most 1, with n labels, k of which are used for root nodes and any root may contain >= 1 labels, n >= 0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 3, 9, 5, 0, 4, 30, 40, 15, 0, 5, 90, 220, 185, 52, 0, 6, 255, 1040, 1485, 906, 203, 0, 7, 693, 4550, 9905, 9891, 4718, 877, 0, 8, 1820, 19040, 59850, 87416, 66808, 26104, 4140, 0, 9, 4644, 77448, 341082, 686826, 750120, 463212, 153063, 21147
Offset: 0
T(3,2) = 9: {1,2}<-3, {1,3}<-2, {2,3}<-1, {1}<-3{2}, {1}{2}<-3, {1}<-2{3}, {1}{3}<-2, {2}<-1{3}, {2}{3}<-1.
Triangle begins:
1;
0, 1;
0, 2, 2;
0, 3, 9, 5;
0, 4, 30, 40, 15;
0, 5, 90, 220, 185, 52;
...
Columns k=0-10 give:
A000007,
A000027,
A273652,
A273653,
A273654,
A273655,
A273656,
A273657,
A273658,
A273659,
A273660.
-
T:= (n, k)-> binomial(n, k)*add(Stirling2(k, t)*t^(n-k), t=0..k):
seq(seq(T(n, k), k=0..n), n=0..11);
-
T[n_, k_] := T[n, k] = Binomial[n, k]*Sum[StirlingS2[k, t]*If[n == k, 1, t^(n - k)], {t, 0, k}];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 27 2016, translated from Maple, updated Jan 01 2021 *)
A355291
Expansion of e.g.f. exp(exp(x)*(exp(x) + 1) - 2).
Original entry on oeis.org
1, 3, 14, 81, 551, 4266, 36803, 348543, 3583484, 39652659, 468970211, 5894584812, 78366374813, 1097537989671, 16136598952718, 248309032411485, 3988468487017379, 66715970326561170, 1159712730763363991, 20909709414253764819, 390374806223071148084, 7534929383736826736007
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[2*x] - 2 + Exp[x]], {x, 0, nmax}], x] * Range[0, nmax]!
Table[Sum[Binomial[n, k] * 2^k * BellB[k] * BellB[n-k], {k, 0, n}], {n, 0, 20}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(exp(x)*(exp(x) + 1) - 2))) \\ Michel Marcus, Jun 27 2022
A355378
Expansion of e.g.f. exp(exp(3*x) - exp(x)).
Original entry on oeis.org
1, 2, 12, 82, 688, 6754, 75096, 928386, 12591392, 185384130, 2938319144, 49799613538, 897495547184, 17118975292514, 344206910941624, 7270287035936706, 160826794265399360, 3716047107259486082, 89472755268582494792, 2240097688067896960674, 58207872357772581544272
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x] - Exp[x]], {x, 0, nmax}], x] * Range[0, nmax]!
Table[Sum[Binomial[n,k] * 3^k * BellB[k] * BellB[n-k, -1], {k, 0, n}], {n, 0, 20}]
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) - exp(x)))) \\ Michel Marcus, Jun 30 2022
A355381
Expansion of e.g.f. exp(exp(3*x) - exp(2*x)).
Original entry on oeis.org
1, 1, 6, 35, 247, 2102, 20547, 224541, 2707292, 35638329, 507464939, 7757439428, 126538995293, 2191454313661, 40120212534838, 773554002955047, 15656660861190371, 331700076893737054, 7337160433117899959, 169068422994937678185, 4050093664805130165348
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x] - Exp[2*x]], {x, 0, nmax}], x] * Range[0, nmax]!
Table[Sum[Binomial[n,k] * 3^k * 2^(n-k) * BellB[k] * BellB[n-k, -1], {k, 0, n}], {n, 0, 20}]
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) - exp(2*x)))) \\ Michel Marcus, Jun 30 2022
A355380
Expansion of e.g.f. exp(exp(3*x) + exp(2*x) - 2).
Original entry on oeis.org
1, 5, 38, 355, 3879, 48050, 661163, 9961745, 162598044, 2851150665, 53350521523, 1059447004560, 22224898346989, 490589320542305, 11356591577861398, 274886065370874775, 6939205217774546339, 182273695066097752170, 4971724931587003394863, 140559648864263508395965
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x] + Exp[2*x] - 2], {x, 0, nmax}], x] * Range[0, nmax]!
Table[Sum[Binomial[n,k] * 3^k * 2^(n-k) * BellB[k] * BellB[n-k], {k, 0, n}], {n, 0, 20}]
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) + exp(2*x) - 2))) \\ Michel Marcus, Jun 30 2022
A355379
Expansion of e.g.f. exp(exp(3*x) + exp(x) - 2).
Original entry on oeis.org
1, 4, 26, 212, 2046, 22588, 278942, 3792916, 56128254, 895795692, 15307847614, 278435732484, 5364073445278, 108994074306268, 2327475127169182, 52069279762495220, 1217024509006768574, 29647115491635327180, 751085909757123127294, 19750410883486281805028
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x] + Exp[x] - 2], {x, 0, nmax}], x] * Range[0, nmax]!
Table[Sum[Binomial[n,k] * 3^k * BellB[k] * BellB[n-k], {k, 0, n}], {n, 0, 20}]
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) + exp(x) - 2))) \\ Michel Marcus, Jun 30 2022
A143397
Triangle T(n,k)=number of forests of labeled rooted trees of height at most 1, with n labels and k nodes, where any root may contain >= 1 labels, n >= 0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 6, 10, 0, 1, 11, 36, 41, 0, 1, 20, 105, 230, 196, 0, 1, 37, 285, 955, 1560, 1057, 0, 1, 70, 756, 3535, 8680, 11277, 6322, 0, 1, 135, 2002, 12453, 41720, 80682, 86800, 41393, 0, 1, 264, 5347, 43008, 186669, 485982, 773724, 708948, 293608
Offset: 0
T(3,2) = 6: {1,2}{3}, {1,3}{2}, {2,3}{1}, {1,2}<-3, {1,3}<-2, {2,3}<-1.
Triangle begins:
1;
0, 1;
0, 1, 3;
0, 1, 6, 10;
0, 1, 11, 36, 41;
0, 1, 20, 105, 230, 196;
0, 1, 37, 285, 955, 1560, 1057;
0, 1, 70, 756, 3535, 8680, 11277, 6322;
...
-
T:= (n,k)-> add(binomial(n, k-t)*Stirling2(n-(k-t),t)*t^(k-t), t=0..k):
seq(seq(T(n, k), k=0..n), n=0..11);
-
T[n_, k_] := Sum[Binomial[n, k-t]*StirlingS2[n - (k-t), t]*t^(k-t), {t, 0, k}]; T[0, 0] = 1; T[_, 0] = 0;
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 31 2016, translated from Maple *)
A347432
E.g.f.: exp( exp(x) * (exp(x) - 1 - x) ).
Original entry on oeis.org
1, 0, 1, 4, 14, 66, 397, 2626, 18797, 148238, 1281134, 11943790, 118998365, 1262189748, 14203022537, 168835162632, 2111832477426, 27708387132906, 380355066174121, 5449577398256414, 81316095965242989, 1261149374033472626, 20293627142875917978, 338263983223664609198
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*(2^j-j-1), j=1..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Sep 02 2021
-
nmax = 23; CoefficientList[Series[Exp[Exp[x] (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (2^k - k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
Showing 1-10 of 12 results.
Comments