A355381
Expansion of e.g.f. exp(exp(3*x) - exp(2*x)).
Original entry on oeis.org
1, 1, 6, 35, 247, 2102, 20547, 224541, 2707292, 35638329, 507464939, 7757439428, 126538995293, 2191454313661, 40120212534838, 773554002955047, 15656660861190371, 331700076893737054, 7337160433117899959, 169068422994937678185, 4050093664805130165348
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x] - Exp[2*x]], {x, 0, nmax}], x] * Range[0, nmax]!
Table[Sum[Binomial[n,k] * 3^k * 2^(n-k) * BellB[k] * BellB[n-k, -1], {k, 0, n}], {n, 0, 20}]
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) - exp(2*x)))) \\ Michel Marcus, Jun 30 2022
A355421
Expansion of e.g.f. exp(Sum_{k=1..3} (exp(k*x) - 1)).
Original entry on oeis.org
1, 6, 50, 504, 5870, 76872, 1111646, 17522664, 298133054, 5433157512, 105396184478, 2165189912040, 46901678992958, 1067332196912136, 25435754924426270, 633014456504059368, 16411191933603611198, 442258823578968351624
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, 3, exp(k*x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (1+2^j+3^j)*binomial(i-1, j-1)*v[i-j+1])); v;
A355397
Expansion of e.g.f. exp(exp(3*x)/3 + exp(2*x)/2 - 5/6).
Original entry on oeis.org
1, 2, 9, 51, 350, 2799, 25373, 255854, 2831177, 34023919, 440414146, 6099346455, 89873849705, 1402403637418, 23081230257449, 399284248276827, 7238080522101270, 137125745341692863, 2708536196071195365, 55660194042713099510, 1187724805063462045289
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x]/3 + Exp[2*x]/2 - 5/6], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 30 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(exp(3*x)/3+exp(2*x)/2-5/6)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^(j-1)+2^(j-1))*binomial(i-1, j-1)*v[i-j+1])); v;
A355411
Expansion of e.g.f. 1/(3 - exp(2*x) - exp(3*x)).
Original entry on oeis.org
1, 5, 63, 1175, 29211, 907775, 33852603, 1472830175, 73232729451, 4096474833695, 254608472798043, 17407167078420575, 1298290575826434891, 104900562662494154015, 9127848307446874753083, 850985644429074730049375, 84626187772620135685119531
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(3-exp(2*x)-exp(3*x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^j+2^j)*binomial(i, j)*v[i-j+1])); v;
Showing 1-4 of 4 results.
Comments