A355378
Expansion of e.g.f. exp(exp(3*x) - exp(x)).
Original entry on oeis.org
1, 2, 12, 82, 688, 6754, 75096, 928386, 12591392, 185384130, 2938319144, 49799613538, 897495547184, 17118975292514, 344206910941624, 7270287035936706, 160826794265399360, 3716047107259486082, 89472755268582494792, 2240097688067896960674, 58207872357772581544272
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x] - Exp[x]], {x, 0, nmax}], x] * Range[0, nmax]!
Table[Sum[Binomial[n,k] * 3^k * BellB[k] * BellB[n-k, -1], {k, 0, n}], {n, 0, 20}]
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) - exp(x)))) \\ Michel Marcus, Jun 30 2022
A355380
Expansion of e.g.f. exp(exp(3*x) + exp(2*x) - 2).
Original entry on oeis.org
1, 5, 38, 355, 3879, 48050, 661163, 9961745, 162598044, 2851150665, 53350521523, 1059447004560, 22224898346989, 490589320542305, 11356591577861398, 274886065370874775, 6939205217774546339, 182273695066097752170, 4971724931587003394863, 140559648864263508395965
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x] + Exp[2*x] - 2], {x, 0, nmax}], x] * Range[0, nmax]!
Table[Sum[Binomial[n,k] * 3^k * 2^(n-k) * BellB[k] * BellB[n-k], {k, 0, n}], {n, 0, 20}]
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) + exp(2*x) - 2))) \\ Michel Marcus, Jun 30 2022
A355409
Expansion of e.g.f. 1/(1 + exp(2*x) - exp(3*x)).
Original entry on oeis.org
1, 1, 7, 55, 571, 7471, 117307, 2148175, 44958571, 1058555791, 27693129307, 796934764495, 25018548004171, 850870651904911, 31163746960955707, 1222922731101304015, 51189052318085027371, 2276586205163067346831, 107204914362429152404507
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+exp(2*x)-exp(3*x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^j-2^j)*binomial(i, j)*v[i-j+1])); v;
A355398
Expansion of e.g.f. exp(exp(3*x)/3 - exp(2*x)/2 + 1/6).
Original entry on oeis.org
1, 0, 1, 5, 22, 115, 761, 5880, 49897, 460045, 4621366, 50385555, 590795217, 7389964400, 98105330961, 1377426850805, 20388005470582, 317112889169555, 5167636268318921, 88001180739368680, 1562559584723343417, 28871671817796197885, 554116841783123679446
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x]/3 - Exp[2*x]/2 + 1/6], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 30 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(exp(3*x)/3-exp(2*x)/2+1/6)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^(j-1)-2^(j-1))*binomial(i-1, j-1)*v[i-j+1])); v;
A368018
Expansion of e.g.f. exp(exp(2*x) - exp(3*x)).
Original entry on oeis.org
1, -1, -4, -5, 57, 548, 1967, -13561, -302718, -2589819, -2709911, 300801642, 5531279773, 48708116819, -142678610012, -13947271486097, -277586590571059, -2741155101562764, 15789174378252979, 1332483468802350235, 31222229349684528898, 380895661222461566625
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (2^j-3^j)*binomial(i-1, j-1)*v[i-j+1])); v;
Showing 1-5 of 5 results.
Comments