A355381
Expansion of e.g.f. exp(exp(3*x) - exp(2*x)).
Original entry on oeis.org
1, 1, 6, 35, 247, 2102, 20547, 224541, 2707292, 35638329, 507464939, 7757439428, 126538995293, 2191454313661, 40120212534838, 773554002955047, 15656660861190371, 331700076893737054, 7337160433117899959, 169068422994937678185, 4050093664805130165348
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x] - Exp[2*x]], {x, 0, nmax}], x] * Range[0, nmax]!
Table[Sum[Binomial[n,k] * 3^k * 2^(n-k) * BellB[k] * BellB[n-k, -1], {k, 0, n}], {n, 0, 20}]
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) - exp(2*x)))) \\ Michel Marcus, Jun 30 2022
A355408
Expansion of e.g.f. 1/(1 + exp(x) - exp(3*x)).
Original entry on oeis.org
1, 2, 16, 170, 2416, 42962, 916696, 22819610, 649207456, 20778364322, 738918769576, 28905116527850, 1233506128752496, 57025618592932082, 2839117599033828856, 151446758367400488890, 8617182795217834505536, 520954229292164353554242
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+exp(x)-exp(3*x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^j-1)*binomial(i, j)*v[i-j+1])); v;
A355379
Expansion of e.g.f. exp(exp(3*x) + exp(x) - 2).
Original entry on oeis.org
1, 4, 26, 212, 2046, 22588, 278942, 3792916, 56128254, 895795692, 15307847614, 278435732484, 5364073445278, 108994074306268, 2327475127169182, 52069279762495220, 1217024509006768574, 29647115491635327180, 751085909757123127294, 19750410883486281805028
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x] + Exp[x] - 2], {x, 0, nmax}], x] * Range[0, nmax]!
Table[Sum[Binomial[n,k] * 3^k * BellB[k] * BellB[n-k], {k, 0, n}], {n, 0, 20}]
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) + exp(x) - 2))) \\ Michel Marcus, Jun 30 2022
A368017
Expansion of e.g.f. exp(exp(x) - exp(3*x)).
Original entry on oeis.org
1, -2, -4, 14, 144, 286, -5080, -61058, -186144, 4016958, 73395928, 468915102, -4728823088, -167453193314, -2051810224568, -406640603074, 533831885402048, 11987797433266302, 110763307665075640, -1459040819952150178, -80503810962755821904
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (1-3^j)*binomial(i-1, j-1)*v[i-j+1])); v;
A355396
Expansion of e.g.f. exp(exp(3*x)/3 - exp(x) + 2/3).
Original entry on oeis.org
1, 0, 2, 8, 38, 240, 1782, 14728, 134598, 1352800, 14800502, 174593848, 2205456838, 29676417680, 423455081142, 6381678299368, 101217742764358, 1684357485887680, 29328589792496502, 533062885681064088, 10091434399407455558, 198592474864415055600
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[Exp[3*x]/3 - Exp[x] + 2/3], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 30 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(exp(3*x)/3-exp(x)+2/3)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^(j-1)-1)*binomial(i-1, j-1)*v[i-j+1])); v;
Showing 1-5 of 5 results.
Comments