cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A143405 Number of forests of labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels, also row sums of A143395, A143396 and A143397.

Original entry on oeis.org

1, 1, 4, 17, 89, 552, 3895, 30641, 265186, 2497551, 25373097, 276105106, 3199697517, 39297401197, 509370849148, 6943232742493, 99217486649933, 1482237515573624, 23093484367004715, 374416757914118941, 6304680593346141746, 110063311977033807187
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Comments

a(n) is the number of the partitions of an n-set where each block is endowed with a nonempty subset. - Emanuele Munarini, Sep 15 2016

Examples

			a(2) = 4, because there are 4 forests for 2 labels: {1,2}, {1}{2}, {1}<-2, {2}<-1.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(add(binomial(n, t)*Stirling2(t, k)*k^(n-t), t=k..n), k=0..n):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*(2^j-1), j=1..n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 05 2019
  • Mathematica
    CoefficientList[Series[Exp[Exp[t] (Exp[t] - 1)], {t, 0, 12}], t] Range[0, 12]! (* Emanuele Munarini, Sep 15 2016 *)
    Table[Sum[Binomial[n, k] 2^k BellB[k] BellB[n - k, -1], {k, 0, n}], {n, 0, 12}] (* Emanuele Munarini, Sep 15 2016 *)
    Table[Sum[BellY[n, k, 2^Range[n] - 1], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    a(n) = sum(k=0, n, k!*sum(j=0, k\2, 1/(j!*(k-2*j)!))*stirling(n, k, 2)); \\ Seiichi Manyama, May 14 2022

Formula

a(n) = Sum_{k=0..n} Sum_{t=k..n} C(n,t) * Stirling2(t,k)*k^(n-t).
a(n) = Sum_{k=0..n} Sum_{t=0..k} C(n,k) * Stirling2(k,t)*t^(n-k).
a(n) = Sum_{k=0..n} Sum_{t=0..k} C(n,k-t) * Stirling2(n-(k-t),t)*t^(k-t).
E.g.f.: exp(exp(x)*(exp(x)-1)). - Vladeta Jovovic, Dec 08 2008
a(n) = sum(binomial(n,k)*2^k*bell(k)*S(n-k,-1),k=0..n), where bell(n) are the Bell numbers (A000110) and S(n,x) = sum(Stirling2(n,k)*x^k,k=0..n) are the Stirling (or exponential) polynomials. - Emanuele Munarini, Sep 15 2016
Identity: sum(binomial(n,k)*a(k)*bell(n-k),k=0..n) = 2^n*bell(n). - Emanuele Munarini, Sep 15 2016
a(n) = Sum_{k=0..n} A047974(k) * Stirling2(n,k). - Seiichi Manyama, May 14 2022
a(n) ~ exp(exp(2*z) - exp(z) - n) * (n/z)^(n + 1/2) / sqrt(2*(1 + 2*z)*exp(2*z) - (1 + z)*exp(z)), where z = LambertW(n)/2 - 1/(1 + 2/LambertW(n) - 4 * n^(1/2) * (1 + LambertW(n)) / LambertW(n)^(3/2)). - Vaclav Kotesovec, Jul 03 2022
a(n) ~ 2^n * n^n / (sqrt(1 + LambertW(n)) * LambertW(n)^n * exp(n + 1/8 - n/LambertW(n) + sqrt(n/LambertW(n)))). - Vaclav Kotesovec, Jul 08 2022

A355378 Expansion of e.g.f. exp(exp(3*x) - exp(x)).

Original entry on oeis.org

1, 2, 12, 82, 688, 6754, 75096, 928386, 12591392, 185384130, 2938319144, 49799613538, 897495547184, 17118975292514, 344206910941624, 7270287035936706, 160826794265399360, 3716047107259486082, 89472755268582494792, 2240097688067896960674, 58207872357772581544272
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Exp[3*x] - Exp[x]], {x, 0, nmax}], x] * Range[0, nmax]!
    Table[Sum[Binomial[n,k] * 3^k * BellB[k] * BellB[n-k, -1], {k, 0, n}], {n, 0, 20}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) - exp(x)))) \\ Michel Marcus, Jun 30 2022

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * 3^k * Bell(k) * Bell(n-k, -1).
a(0) = 1; a(n) = Sum_{k=1..n} (3^k - 1) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Jun 30 2022
a(n) ~ exp(exp(3*z) - exp(z) - n) * (n/z)^(n + 1/2) / sqrt(3*(1 + 3*z)*exp(3*z) - (1 + z)*exp(z)), where z = LambertW(n)/3 - 1/(1 + 3/LambertW(n) - 9 * n^(2/3) * (1 + LambertW(n)) / LambertW(n)^(5/3)). - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (3*n/LambertW(n))^n * exp(n/LambertW(n) - (n/LambertW(n))^(1/3) - n) / sqrt(1 + LambertW(n)). - Vaclav Kotesovec, Jul 10 2022

A355381 Expansion of e.g.f. exp(exp(3*x) - exp(2*x)).

Original entry on oeis.org

1, 1, 6, 35, 247, 2102, 20547, 224541, 2707292, 35638329, 507464939, 7757439428, 126538995293, 2191454313661, 40120212534838, 773554002955047, 15656660861190371, 331700076893737054, 7337160433117899959, 169068422994937678185, 4050093664805130165348
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 30 2022

Keywords

Comments

In general, if m > 0, b > d >= 1 and e.g.f. = exp(m*exp(b*x) + r*exp(d*x) + s) then a(n) ~ exp(m*exp(b*z) + r*exp(d*z) + s - n) * (n/z)^(n + 1/2) / sqrt(m*b*(1 + b*z)*exp(b*z) + r*d*(1 + d*z)*exp(d*z)), where z = LambertW(n/m)/b - 1/(d + b/LambertW(n/m) + b^2 * m^(d/b) * n^(1 - d/b) * (1 + LambertW(n/m)) / (d*r*LambertW(n/m)^(2 - d/b))). - Vaclav Kotesovec, Jul 03 2022
In addition, if b/d >=2 then a(n) ~ c * (b*n/LambertW(n/m))^n * exp(n/LambertW(n/m) + r * (n/(m*LambertW(n/m)))^(d/b) - n + s) / sqrt(1 + LambertW(n/m)), where c = 1 for b/d > 2 and c = exp(-r^2/(8*m)) for b/d = 2. - Vaclav Kotesovec, Jul 10 2022

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Exp[3*x] - Exp[2*x]], {x, 0, nmax}], x] * Range[0, nmax]!
    Table[Sum[Binomial[n,k] * 3^k * 2^(n-k) * BellB[k] * BellB[n-k, -1], {k, 0, n}], {n, 0, 20}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) - exp(2*x)))) \\ Michel Marcus, Jun 30 2022

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * 3^k * 2^(n-k) * Bell(k) * Bell(n-k, -1).
a(0) = 1; a(n) = Sum_{k=1..n} (3^k - 2^k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Jun 30 2022
a(n) ~ exp(exp(3*z) - exp(2*z) - n) * (n/z)^(n + 1/2) / sqrt(3*(1 + 3*z)*exp(3*z) - 2*(1 + 2*z)*exp(2*z)), where z = LambertW(n)/3 - 1/(2 + 3/LambertW(n) - 9 * n^(1/3) * (1 + LambertW(n)) / (2*LambertW(n)^(4/3))). - Vaclav Kotesovec, Jul 03 2022

A355380 Expansion of e.g.f. exp(exp(3*x) + exp(2*x) - 2).

Original entry on oeis.org

1, 5, 38, 355, 3879, 48050, 661163, 9961745, 162598044, 2851150665, 53350521523, 1059447004560, 22224898346989, 490589320542305, 11356591577861398, 274886065370874775, 6939205217774546339, 182273695066097752170, 4971724931587003394863, 140559648864263508395965
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Exp[3*x] + Exp[2*x] - 2], {x, 0, nmax}], x] * Range[0, nmax]!
    Table[Sum[Binomial[n,k] * 3^k * 2^(n-k) * BellB[k] * BellB[n-k], {k, 0, n}], {n, 0, 20}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) + exp(2*x) - 2))) \\ Michel Marcus, Jun 30 2022

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * 3^k * 2^(n-k) * Bell(k) * Bell(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} (3^k + 2^k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Jun 30 2022
a(n) ~ exp(exp(3*z) + exp(2*z) - 2 - n) * (n/z)^(n + 1/2) / sqrt(3*(1 + 3*z)*exp(3*z) + 2*(1 + 2*z)*exp(2*z)), where z = LambertW(n)/3 - 1/(2 + 3/LambertW(n) + 9 * n^(1/3) * (1 + LambertW(n)) / (2*LambertW(n)^(4/3))). - Vaclav Kotesovec, Jul 03 2022

A355379 Expansion of e.g.f. exp(exp(3*x) + exp(x) - 2).

Original entry on oeis.org

1, 4, 26, 212, 2046, 22588, 278942, 3792916, 56128254, 895795692, 15307847614, 278435732484, 5364073445278, 108994074306268, 2327475127169182, 52069279762495220, 1217024509006768574, 29647115491635327180, 751085909757123127294, 19750410883486281805028
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Exp[3*x] + Exp[x] - 2], {x, 0, nmax}], x] * Range[0, nmax]!
    Table[Sum[Binomial[n,k] * 3^k * BellB[k] * BellB[n-k], {k, 0, n}], {n, 0, 20}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(exp(exp(3*x) + exp(x) - 2))) \\ Michel Marcus, Jun 30 2022

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * 3^k * Bell(k) * Bell(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} (3^k + 1) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Jun 30 2022
a(n) ~ exp(exp(3*z) + exp(z) - 2 - n) * (n/z)^(n + 1/2) / sqrt(3*(1 + 3*z)*exp(3*z) + (1 + z)*exp(z)), where z = LambertW(n)/3 - 1/(1 + 3/LambertW(n) + 9 * n^(2/3) * (1 + LambertW(n)) / LambertW(n)^(5/3)). - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (3*n/LambertW(n))^n * exp(n/LambertW(n) + (n/LambertW(n))^(1/3) - n - 2) / sqrt(1 + LambertW(n)). - Vaclav Kotesovec, Jul 10 2022

A355423 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} (exp(j*x) - 1)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 6, 14, 5, 0, 1, 10, 50, 81, 15, 0, 1, 15, 130, 504, 551, 52, 0, 1, 21, 280, 2000, 5870, 4266, 203, 0, 1, 28, 532, 6075, 35054, 76872, 36803, 877, 0, 1, 36, 924, 15435, 148429, 684000, 1111646, 348543, 4140, 0
Offset: 0

Views

Author

Seiichi Manyama, Jul 01 2022

Keywords

Examples

			Square array begins:
  1,  1,    1,     1,      1,       1, ...
  0,  1,    3,     6,     10,      15, ...
  0,  2,   14,    50,    130,     280, ...
  0,  5,   81,   504,   2000,    6075, ...
  0, 15,  551,  5870,  35054,  148429, ...
  0, 52, 4266, 76872, 684000, 4004100, ...
		

Crossrefs

Columns k=0-4 give: A000007, A000110, A355291, A355421, A355422.
Main diagonal gives A320288.

Formula

T(0,k) = 1 and T(n,k) = Sum_{i=1..n} (Sum_{j=1..k} j^i) * binomial(n-1,i-1) * T(n-i,k) for n > 0.
Showing 1-6 of 6 results.