cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A278261 a(n) = A046523(A273671(n)).

Original entry on oeis.org

1, 8, 2, 8, 24, 24, 2, 64, 24, 24, 192, 72, 24, 24, 4, 8, 24, 96, 24, 72, 96, 24, 72, 192, 24, 3456, 192, 24, 3456, 24, 2, 216, 192, 24, 1080, 72, 24, 8640, 576, 192, 8640, 3456, 24, 1080, 3456, 192, 1080, 120, 72, 96, 120, 24, 96, 360, 72, 576, 360, 24, 192, 120, 24, 72, 6, 8, 24, 1080, 24, 5400, 8640, 24, 72, 1080, 24, 432000, 8640, 24, 3456, 12288, 24, 120
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence works as a "sentinel" for A273671 by matching to any sequence that is obtained as f(A273671(n)), where f(n) is any function that depends only on the prime signature of n (see the index entry for "sequences computed from exponents in ..."). The only other sequence that as of Nov 11 2016 seems to match is A106347, although more terms of the latter would be needed to better ascertain whether the connection is spurious or genuine.

Crossrefs

Sequences that seem to partition N into same or coarser equivalence classes: A106347

Programs

Formula

a(n) = A046523(A273671(n)).

A270419 Denominator of the rational number obtained when the exponents in prime factorization of n are reinterpreted as alternating binary sums (A065620).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, May 23 2016

Keywords

Comments

Map n -> A270418(n)/A270419(n) is a bijection from N (1, 2, 3, ...) to the set of positive rationals.

Crossrefs

Cf. A270418 (gives the numerators).
Cf. A270428 (indices of ones).
Cf. also A270420, A270421, A270436, A270437 and permutation pair A273671/A273672.
Differs from A055229 for the first time at n=32, where a(32)=8, while A055229(32)=2.

Programs

  • Mathematica
    s[n_] := s[n] = If[OddQ[n], -2*s[(n - 1)/2] - 1, 2*s[n/2]]; s[0] = 0; f[p_, e_] := p^If[OddQ[DigitCount[e, 2, 1]], 0, s[e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 01 2023 *)
  • PARI
    A270419(n)={n=factor(n);n[,2]=apply(A065620,n[,2]);denominator(factorback(n))} \\ M. F. Hasler, Apr 16 2018

Formula

Multiplicative with a(p^e) = p^(-A065620(e)) for evil e, a(p^e)=1 for odious e, or equally, a(p^e) = p^(A010059(e) * -A065620(e)).
a(1) = 1, for n > 1, a(n) = a(A028234(n)) * A020639(n)^( A010059(A067029(n)) * -A065620(A067029(n)) ).
Other identities. For all n >= 1:
a(A270436(n)) = 1, a(A270437(n)) = n.

A270418 Numerator of the rational number obtained when exponents in prime factorization of n are reinterpreted as alternating binary sums (A065620).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70, 71, 9, 73, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Antti Karttunen, May 23 2016

Keywords

Comments

Map n -> A270418(n)/A270419(n) is a bijection from N (1, 2, 3, ...) to the set of positive rationals.

Crossrefs

Cf. A270419 (gives the denominators).
Cf. A262675 (indices of ones).
Cf. also A270420, A270421, A270436, A270437 and permutation pair A273671/A273672.
Differs from A056192 for the first time at n=32, which here a(32)=1, while A056192(32)=4.

Programs

  • Mathematica
    s[0] = 0; s[n_]:= s[n]= If[OddQ[n], 1 - 2*s[(n-1)/2], 2*s[n/2]]; f[p_, e_] := p^(ThueMorse[e] * s[e]); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 05 2023 *)
  • PARI
    A270418(n)={n=factor(n);n[,2]=apply(A065620,n[,2]);numerator(factorback(n))} \\ M. F. Hasler, Apr 16 2018

Formula

Multiplicative with a(p^e) = p^A065620(e) for odious e, a(p^e)=1 for evil e, or equally, a(p^e) = p^(A010060(e)*A065620(e)).
a(1) = 1, for n > 1, a(n) = a(A028234(n)) * A020639(n)^( A010060(A067029(n)) * A065620(A067029(n)) ).
Other identities. For all n >= 1:
a(A270436(n)) = n, a(A270437(n)) = 1.

A270436 a(1) = 1, for n > 1, a(n) = A020639(n)^A065621(A067029(n)) * a(A028234(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 128, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 384, 25, 26, 2187, 28, 29, 30, 31, 8192, 33, 34, 35, 36, 37, 38, 39, 640, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 4374, 55, 896, 57, 58, 59, 60, 61, 62, 63, 16384, 65, 66, 67, 68, 69, 70, 71, 1152, 73, 74, 75
Offset: 1

Views

Author

Antti Karttunen, May 27 2016

Keywords

Crossrefs

Cf. A270428 (same sequence sorted into ascending order).
Cf. also A270418, A270419, A270437 and permutation A273671.

Programs

  • Mathematica
    f[p_, e_] := p^BitXor[e - 1, 2*e - 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 13 2023 *)

Formula

Multiplicative with a(p^e) = p^A065621(e).
a(1) = 1, for n > 1, a(n) = A020639(n)^A065621(A067029(n)) * a(A028234(n)).
Other identities. For all n >= 1:
A270418(a(n)) = n, A270419(a(n)) = 1.

A270437 Multiplicative with a(p^e) = p^(e XOR 2e), where XOR is bitwise-xor.

Original entry on oeis.org

1, 8, 27, 64, 125, 216, 343, 32, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 864, 15625, 17576, 243, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 4000, 68921, 74088, 79507, 85184, 91125, 97336, 103823, 110592, 117649, 125000
Offset: 1

Views

Author

Antti Karttunen, May 27 2016

Keywords

Comments

Multiplicative with a(p^e) = p^A048724(e), where A048724(e) = (e XOR 2e).
Multiples of 8 in the ring defined in A329329. - Peter Munn, Jan 17 2020

Crossrefs

Cf. A262675 (same sequence sorted into ascending order).
Cf. also A270418, A270419, A270436 and permutation A273671.
Row 8 and column 8 of A329329.

Programs

  • Mathematica
    f[p_, e_] := p^BitXor[2*e, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 07 2023 *)

Formula

a(1) = 1, for n > 1, a(n) = A020639(n)^A048724(A067029(n)) * a(A028234(n)).
Other identities. For all n >= 1:
A270418(a(n)) = 1, A270419(a(n)) = n.
a(n) = A329329(n,8) = A329329(8,n). - Peter Munn, Jan 17 2020

Extensions

Name changed by Antti Karttunen, Sep 07 2023

A273672 Permutation of natural numbers induced by looking up the position of fraction A270418(n)/A270419(n) from the full Stern-Brocot tree A007305(n+1)/A047679(n-1).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 2, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 6, 33554431, 67108863, 4, 268435455, 536870911, 1073741823, 2147483647, 128, 8589934591, 17179869183, 34359738367, 68719476735, 137438953471, 274877906943, 549755813887, 14
Offset: 1

Views

Author

Antti Karttunen, May 27 2016

Keywords

Crossrefs

Inverse: A273671.
Cf. also A007305, A047679.

Programs

  • PARI
    A065620(n, c=1) = sum(i=0, logint(n+!n, 2), if(bittest(n, i), (-1)^c++<A065620
    SBtree_index(r) = { my(m=numerator(r),n=denominator(r),z=1); while(m!=n, if(mA273672(n) = { n=factor(n); n[, 2] = apply(A065620, n[, 2]); SBtree_index(factorback(n)); }; \\ Antti Karttunen, Mar 07 2020, based also on M. F. Hasler's code in A270418 and A270419
  • Scheme
    (define (A273672 n) (SBtree_index (A270418 n) (A270419 n)))
    (define (SBtree_index m n) (let loop ((m m) (n n) (z 1)) (cond ((= m n) z) ((< m n) (loop m (- n m) (+ z z))) (else (loop (- m n) n (+ z z 1))))))
    

A120249 Numerator of cfenc[n] (see definition in comments).

Original entry on oeis.org

1, 2, 3, 3, 5, 5, 8, 4, 4, 8, 13, 7, 21, 13, 7, 5, 34, 7, 55, 11, 11, 21, 89, 9, 7, 34, 5, 18, 144, 12, 233, 6, 18, 55, 12, 10, 377, 89, 29, 14, 610, 19, 987, 29, 9, 144, 1597, 11, 11, 11, 47, 47, 2584, 9, 19, 23, 76, 233, 4181, 17, 6765, 377, 14, 7, 31, 31, 10946, 76, 123, 19
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Jun 12 2006, Jun 25 2006

Keywords

Comments

a[n] := numerator of cfenc[n]. cfenc[n] := number given by interpreting as a continued fraction expansion (indexed from 1) the sequence whose i-th entry is one plus the exponent on the i-th prime factor of n (fix cfenc[1]=1). a[2^k] = cfenc[2^k] = k+1.

Examples

			a(2646) = numerator[cfenc[2646]]= numerator[cfenc[2^1 * 3^3 * 7^2]] = numerator[FromContinuedFraction[{2; 4, 1, 3}]] = numerator[2 + 1/(4 + 1/(1 + 1/3))] = numerator[42/19] = 42.
From _Antti Karttunen_, Oct 29 2019: (Start)
a(6) = 3 because 6 = 2^1 * 3^1, and the numerator of the continued fraction 1+1 + 1/(1+1) = 5/2 is 5.
a(12) = 7 because 12 = 2^2 * 3^1, and the numerator of the continued fraction 2+1 + 1/(1+1) = 7/2 is 7.
a(15) = 7 because 15 = 2^0 * 3^1 * 5^1, and the numerator of the continued fraction 0+1 + 1/(1+1 + 1/(1+1)) = 1 + 1/(2 + 1/2) = 1 + 2/5 = 7/5 is 7.
(End)
		

Crossrefs

Corresponding denominators in A120250. Numerators modulo respective denominators in A120251.

Programs

  • Mathematica
    Table[If[n == 1, 1, (fl = FactorInteger[n]; pq = Table[1, {i, 1, PrimePi[Last[fl][[1]]]}]; While[Length[fl] > 0, pp = First[fl]; fl = Drop[fl, 1]; pq[[PrimePi[pp[[1]]]]] = pp[[2]] + 1;]; Numerator[FromContinuedFraction[pq]])],{n,1,80}]
  • PARI
    A120249(n) = if(1==n,n, my(pi=primepi(vecmax(factor(n)[, 1])), cf=1+valuation(n,prime(pi))); pi--; while(pi, cf = (1+valuation(n,prime(pi)))+(1/cf); pi--); numerator(cf)); \\ Antti Karttunen, Oct 26 2019

Formula

a(2^k) = k+1.
a(A000040(n)) = A000045(n+2).
From Antti Karttunen, Oct 29 2019: (Start)
The following formula employs Gauss's notation for continued fractions (see the section "Notations" in the Wikipedia-article), for example, K_{i=1..3} u(i) stands for 1/(u(1) + 1/(u(2) + 1/u(3))):
Let c(n) = A001511(n) + K_{i=2..A061395(n)} 1/(1+A286561(n,A000040(i))). Then a(n) is the numerator of c(n), and A120250(n) is the denominator of c(n).
For all n >= 2, a(2n) = a(A003961(n)), thus a(n) = f(A323080(n)) for some function f.
(End)
Showing 1-7 of 7 results.