cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A270420 Numbers n for which A270418(n) > A270419(n).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Antti Karttunen, May 23 2016

Keywords

Crossrefs

Complement: A270421 (apart from 1 which is in neither sequence).
Cf. A270428 (a subsequence after initial 1).

A270421 Numbers n for which A270418(n) < A270419(n).

Original entry on oeis.org

8, 27, 32, 54, 64, 96, 125, 160, 192, 216, 224, 243, 250, 343, 375, 486, 500, 512, 686, 729, 864, 972, 1000, 1024, 1029, 1080, 1215, 1331, 1372, 1458, 1536, 1701, 1715, 1728, 1944, 2058, 2197, 2430, 2560, 2662, 2673, 2744, 2916, 3000, 3072, 3125, 3159, 3375, 3402, 3584, 3645, 3888, 3993, 4000, 4096, 4131, 4320, 4394
Offset: 1

Views

Author

Antti Karttunen, May 23 2016

Keywords

Crossrefs

Complement: A270420 (apart from 1 which is in neither sequence).
Cf. A262675 (a subsequence after initial 1).

A273672 Permutation of natural numbers induced by looking up the position of fraction A270418(n)/A270419(n) from the full Stern-Brocot tree A007305(n+1)/A047679(n-1).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 2, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 6, 33554431, 67108863, 4, 268435455, 536870911, 1073741823, 2147483647, 128, 8589934591, 17179869183, 34359738367, 68719476735, 137438953471, 274877906943, 549755813887, 14
Offset: 1

Views

Author

Antti Karttunen, May 27 2016

Keywords

Crossrefs

Inverse: A273671.
Cf. also A007305, A047679.

Programs

  • PARI
    A065620(n, c=1) = sum(i=0, logint(n+!n, 2), if(bittest(n, i), (-1)^c++<A065620
    SBtree_index(r) = { my(m=numerator(r),n=denominator(r),z=1); while(m!=n, if(mA273672(n) = { n=factor(n); n[, 2] = apply(A065620, n[, 2]); SBtree_index(factorback(n)); }; \\ Antti Karttunen, Mar 07 2020, based also on M. F. Hasler's code in A270418 and A270419
  • Scheme
    (define (A273672 n) (SBtree_index (A270418 n) (A270419 n)))
    (define (SBtree_index m n) (let loop ((m m) (n n) (z 1)) (cond ((= m n) z) ((< m n) (loop m (- n m) (+ z z))) (else (loop (- m n) n (+ z z 1))))))
    

A262675 Exponentially evil numbers.

Original entry on oeis.org

1, 8, 27, 32, 64, 125, 216, 243, 343, 512, 729, 864, 1000, 1024, 1331, 1728, 1944, 2197, 2744, 3125, 3375, 4000, 4096, 4913, 5832, 6859, 7776, 8000, 9261, 10648, 10976, 12167, 13824, 15552, 15625, 16807, 17576, 19683, 21952, 23328, 24389, 25000, 27000, 27648, 29791
Offset: 1

Views

Author

Vladimir Shevelev, Sep 27 2015

Keywords

Comments

Or the numbers whose prime power factorization contains primes only in evil exponents (A001969): 0, 3, 5, 6, 9, 10, 12, ...
If n is in the sequence, then n^2 is also in the sequence.
A268385 maps each term of this sequence to a unique nonzero square (A000290), and vice versa. - Antti Karttunen, May 26 2016

Examples

			864 = 2^5*3^3; since 5 and 3 are evil numbers, 864 is in the sequence.
		

Crossrefs

Subsequence of A036966.
Apart from 1, a subsequence of A270421.
Indices of ones in A270418.
Sequence A270437 sorted into ascending order.

Programs

  • Haskell
    a262675 n = a262675_list !! (n-1)
    a262675_list = filter
       (all (== 1) . map (a010059 . fromIntegral) . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 25 2015
    
  • Mathematica
    {1}~Join~Select[Range@ 30000, AllTrue[Last /@ FactorInteger[#], EvenQ@ First@ DigitCount[#, 2] &] &] (* Michael De Vlieger, Sep 27 2015, Version 10 *)
    expEvilQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], EvenQ[DigitCount[#, 2, 1]] &]; With[{max = 30000}, Select[Union[Flatten[Table[i^2*j^3, {j, Surd[max, 3]}, {i, Sqrt[max/j^3]}]]], expEvilQ]] (* Amiram Eldar, Dec 01 2023 *)
  • PARI
    isok(n) = {my(f = factor(n)); for (i=1, #f~, if (hammingweight(f[i,2]) % 2, return (0));); return (1);} \\ Michel Marcus, Sep 27 2015
    
  • Perl
    use ntheory ":all"; sub isok { my @f = factor_exp($[0]); return scalar(grep { !(hammingweight($->[1]) % 2) } @f) == @f; } # Dana Jacobsen, Oct 26 2015

Formula

Product_{k=1..A001221(n)} A010059(A124010(n,k)) = 1. - Reinhard Zumkeller, Oct 25 2015
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=2} 1/p^A001969(k)) = Product_{p prime} f(1/p) = 1.2413599378..., where f(x) = (1/(1-x) + Product_{k>=0} (1 - x^(2^k)))/2. - Amiram Eldar, May 18 2023, Dec 01 2023

Extensions

More terms from Michel Marcus, Sep 27 2015

A270419 Denominator of the rational number obtained when the exponents in prime factorization of n are reinterpreted as alternating binary sums (A065620).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, May 23 2016

Keywords

Comments

Map n -> A270418(n)/A270419(n) is a bijection from N (1, 2, 3, ...) to the set of positive rationals.

Crossrefs

Cf. A270418 (gives the numerators).
Cf. A270428 (indices of ones).
Cf. also A270420, A270421, A270436, A270437 and permutation pair A273671/A273672.
Differs from A055229 for the first time at n=32, where a(32)=8, while A055229(32)=2.

Programs

  • Mathematica
    s[n_] := s[n] = If[OddQ[n], -2*s[(n - 1)/2] - 1, 2*s[n/2]]; s[0] = 0; f[p_, e_] := p^If[OddQ[DigitCount[e, 2, 1]], 0, s[e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 01 2023 *)
  • PARI
    A270419(n)={n=factor(n);n[,2]=apply(A065620,n[,2]);denominator(factorback(n))} \\ M. F. Hasler, Apr 16 2018

Formula

Multiplicative with a(p^e) = p^(-A065620(e)) for evil e, a(p^e)=1 for odious e, or equally, a(p^e) = p^(A010059(e) * -A065620(e)).
a(1) = 1, for n > 1, a(n) = a(A028234(n)) * A020639(n)^( A010059(A067029(n)) * -A065620(A067029(n)) ).
Other identities. For all n >= 1:
a(A270436(n)) = 1, a(A270437(n)) = n.

A367168 The largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Comments

First differs from A056192 at n = 32 and from A270418 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367168(n): return prod(p**e for p,e in factorint(n).items() if not(e&-e)^e) # Chai Wah Wu, Nov 10 2023

Formula

Multiplicative with a(p^e) = p^A048298(e).
a(n) <= n, with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 0.881513... (A065465).

A273671 Permutation of natural numbers: a(n) = A270436(A007305(n+1)) * A270437(A047679(n-1)).

Original entry on oeis.org

1, 8, 2, 27, 54, 24, 3, 64, 250, 375, 192, 108, 135, 40, 4, 125, 686, 96, 1029, 1372, 160, 1715, 500, 320, 875, 16000, 448, 189, 3456, 56, 5, 216, 1458, 3993, 3000, 5324, 10985, 8640, 2916, 3645, 12096, 281216, 9317, 7000, 170368, 5103, 1080, 750, 3087, 352, 3430, 3773, 416, 4116, 1125, 576, 1500, 1625, 704, 270, 297, 72, 6, 343
Offset: 1

Views

Author

Antti Karttunen, May 27 2016

Keywords

Comments

Permutation of natural numbers induced by looking up the position of A007305(n+1)/A047679(n-1) [each fraction in the full Stern-Brocot tree] in the set of positive rationals as ordered by A270418(n)/A270419(n).

Crossrefs

Programs

Formula

a(n) = A270436(A007305(n+1)) * A270437(A047679(n-1)).

A270436 a(1) = 1, for n > 1, a(n) = A020639(n)^A065621(A067029(n)) * a(A028234(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 128, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 384, 25, 26, 2187, 28, 29, 30, 31, 8192, 33, 34, 35, 36, 37, 38, 39, 640, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 4374, 55, 896, 57, 58, 59, 60, 61, 62, 63, 16384, 65, 66, 67, 68, 69, 70, 71, 1152, 73, 74, 75
Offset: 1

Views

Author

Antti Karttunen, May 27 2016

Keywords

Crossrefs

Cf. A270428 (same sequence sorted into ascending order).
Cf. also A270418, A270419, A270437 and permutation A273671.

Programs

  • Mathematica
    f[p_, e_] := p^BitXor[e - 1, 2*e - 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 13 2023 *)

Formula

Multiplicative with a(p^e) = p^A065621(e).
a(1) = 1, for n > 1, a(n) = A020639(n)^A065621(A067029(n)) * a(A028234(n)).
Other identities. For all n >= 1:
A270418(a(n)) = n, A270419(a(n)) = 1.

A270437 Multiplicative with a(p^e) = p^(e XOR 2e), where XOR is bitwise-xor.

Original entry on oeis.org

1, 8, 27, 64, 125, 216, 343, 32, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 864, 15625, 17576, 243, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 4000, 68921, 74088, 79507, 85184, 91125, 97336, 103823, 110592, 117649, 125000
Offset: 1

Views

Author

Antti Karttunen, May 27 2016

Keywords

Comments

Multiplicative with a(p^e) = p^A048724(e), where A048724(e) = (e XOR 2e).
Multiples of 8 in the ring defined in A329329. - Peter Munn, Jan 17 2020

Crossrefs

Cf. A262675 (same sequence sorted into ascending order).
Cf. also A270418, A270419, A270436 and permutation A273671.
Row 8 and column 8 of A329329.

Programs

  • Mathematica
    f[p_, e_] := p^BitXor[2*e, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 07 2023 *)

Formula

a(1) = 1, for n > 1, a(n) = A020639(n)^A048724(A067029(n)) * a(A028234(n)).
Other identities. For all n >= 1:
A270418(a(n)) = 1, A270419(a(n)) = n.
a(n) = A329329(n,8) = A329329(8,n). - Peter Munn, Jan 17 2020

Extensions

Name changed by Antti Karttunen, Sep 07 2023

A367514 The exponentially odious part of n: the largest unitary divisor of n that is an exponentially odious number (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Comments

First differs from A056192 at n = 32, and from A270418 and A367168 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e*ThueMorse[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(hammingweight(f[i, 2])%2, f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367514(n): return prod(p**e for p, e in factorint(n).items() if e.bit_count()&1) # Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = p^(e*A010060(e)) = p^A102392(e).
a(n) = n/A367513(n).
A001221(a(n)) = A293439(n).
A034444(a(n)) = A367515(n).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
a(n) <= n, with equality if and only if n is an exponentially odious number (A270428).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 0.88585652437242918295..., and f(x) = (x+2)/(2*(x+1)) + (x/2) * Product_{k>=0} (1 - x^(2^k)).
Showing 1-10 of 10 results.