cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273892 Numbers starting with an even (decimal) digit.

Original entry on oeis.org

0, 2, 4, 6, 8, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219
Offset: 1

Views

Author

Giovanni Teofilatto, Jun 02 2016

Keywords

Comments

For positive terms, a number is a term iff the first digit is even. Therefore, for k > 0, there are 4 * 10^(k - 1) terms having precisely k digits. - David A. Corneth, Jun 02 2016
Also numbers such that when the leftmost digit is moved to the unit's place the result is divisible by 2. - Stefano Spezia, Jul 08 2025

Examples

			21 is a term because 2 is an even number. - _Altug Alkan_, Jun 02 2016
		

Crossrefs

Programs

  • Magma
    [0] cat [n: n in [1..220] | IsEven(Intseq(n)[#Intseq(n)])]; // Bruno Berselli, Jun 15 2016
  • Mathematica
    Select[Range[0, 219], EvenQ@ FromDigits@ Reverse@ IntegerDigits@ # &] (* or *) {0} ~ Join ~ Select[Range@ 219, EvenQ@ Floor[#/10^Floor@ Log10@ #] &] (* Michael De Vlieger, Jun 03 2016 *)
  • PARI
    A004086(n) = eval(concat(Vecrev(Str(n)))); lista(nn) = for(n=0, nn, if(A004086(n) % 2 == 0, print1(n, ", "))); \\ Altug Alkan, Jun 02 2016
    
  • PARI
    a(n)=if(n==1, return(0), n--; k = logint(9*n\4, 10)); n -= 4 * ((10^k - 1) / 9); n--; 2 * (n \ 10^k + 1)*10^k+n%10^k
    is(n) = n==0||digits(n)[1]%2==0 \\ David A. Corneth, Jun 02 2016