cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273895 T(n, k) is the number of Horizontal Convex Polyominoes with n cells and k rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 9, 8, 1, 0, 1, 16, 31, 12, 1, 0, 1, 25, 85, 68, 16, 1, 0, 1, 36, 190, 260, 121, 20, 1, 0, 1, 49, 371, 777, 604, 190, 24, 1, 0, 1, 64, 658, 1960, 2299, 1180, 275, 28, 1, 0, 1, 81, 1086, 4368, 7221, 5509, 2052, 376, 32, 1, 0
Offset: 0

Views

Author

Michael Somos, Jun 02 2016

Keywords

Examples

			Triangle begins:
0,
0, 1,
0, 1, 1,
0, 1, 4, 1,
0, 1, 9, 8, 1,
		

Crossrefs

Cf. A001169.

Programs

  • Mathematica
    T[n_, m_] := Sum[Sum[Sum[Binomial[i - 2*j, j]*2^(i - 3*j)*Binomial[k + j, i - 2*j]*Binomial[k + 3*j - i, m + j - i - 1], {j, 0, m + i - 1}]*Binomial[ n - k - 2, n - k - i - 1], {i, 0, n - k - 1}], {k, 0, n - 1}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2019, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=sum(sum((sum(binomial(i-2*j,j)*2^(i-3*j)*binomial(k+j,i-2*j)*binomial(k+3*j-i,m+j-i-1),j,0,m+i-1))*binomial(n-k-2,n-k-i-1),i,0,n-k-1),k,0,n-1); /* Vladimir Kruchinin, Jan 27 2019 */
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, polcoeff( polcoeff( x * y *(1 - x)^3 / ((1 - x)^4 - x * y * (1 - x - x^2 + x^3 + x^2 * y)) + x * O(x^n), n), k))};
    

Formula

G.f.: x * y * (1 - x)^3 / ((1 - x)^4 - x * y * (1 - x - x^2 + x^3 + x^2 * y)) = Sum_{0<=k<=n} T(n, k) * x^n * y^k.
Row sums are A001169.
T(n,m) = Sum_{k=0..n-1} Sum_{i=0..n-k-1} [Sum_{j=0..m+i-1} C(i-2*j,j)*2^(i-3*j)*C(k+j,i-2*j)*C(k+3*j-i,m+j-i-1)]*C(n-k-2,n-k-i-1). - Vladimir Kruchinin, Jan 27 2019