cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001169 Number of board-pile polyominoes with n cells.

Original entry on oeis.org

1, 2, 6, 19, 61, 196, 629, 2017, 6466, 20727, 66441, 212980, 682721, 2188509, 7015418, 22488411, 72088165, 231083620, 740754589, 2374540265, 7611753682, 24400004911, 78215909841, 250726529556, 803721298537, 2576384425157, 8258779154250, 26474089989299
Offset: 1

Views

Author

Keywords

Comments

The inverse binomial transform is 1,1,3,6,..., i.e., the unsigned version of A077926. - R. J. Mathar, May 15 2008
a(n+1)/a(n) tends to a limit which is equal to the largest real root of the denominator of the g.f., 3.20556943040... = A246773 . - Robert G. Wilson v, Feb 01 2015

References

  • W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics I, p. 259.

Crossrefs

Cf. A049219, A049220 (partial sums), A049221, A049222, A246773, A273895.

Programs

  • Magma
    I:=[1,2,6,19,61]; [n le 5 select I[n] else 5*Self(n-1)-7*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
  • Mathematica
    a[n_] := a[n] = If[n<5, {1, 2, 6, 19}[[n]], 5a[n-1] - 7a[n-2] + 4a[n-3]]; Table[a[n], {n, 30}]
    Join[{1},LinearRecurrence[{5,-7,4},{2,6,19},40]] (* Harvey P. Dale, Sep 11 2014 *)
    Rest@ CoefficientList[ Series[x (1 - x)^3/(1 - 5x + 7x^2 - 4x^3), {x, 0, 28}], x] (* Robert G. Wilson v, Feb 01 2015 *)
  • Maxima
    makelist(sum(sum(binomial(k,i)*binomial(n+2*i-1,4*k-i),i,0,k),k,0,n-1),n,0,24); /* Emanuele Munarini, May 19 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( x * (1 - x)^3 / (1 - 5*x + 7*x^2 - 4*x^3) + x * O(x^n), n))}; /* Michael Somos, Jun 02 2016 */
    

Formula

G.f.: x*(1-x)^3/(1 - 5*x + 7*x^2 - 4*x^3). - Simon Plouffe in his 1992 dissertation
a(n) = 5*a(n-1) - 7*a(n-2) + 4*a(n-3) for n >= 5.
a(n) = sum(k=0..n-1, sum(i=0..k, binomial(k,i)*binomial(n+2*i-1,4*k-i))). - Emanuele Munarini, May 19 2011
a(n) = a(n-1) + A049219(n) + A049220(n) for n >= 2.
Row sums of A273895. - Michael Somos, Jun 02 2016

Extensions

More terms from Dean Hickerson

A308359 Triangle T(n,w) read by rows: the number of fixed polyominoes with n cells and width w of the convex hull.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 8, 1, 1, 18, 31, 12, 1, 1, 35, 95, 68, 16, 1, 1, 66, 269, 282, 121, 20, 1, 1, 123, 721, 1027, 638, 190, 24, 1, 1, 228, 1866, 3468, 2817, 1226, 275, 28, 1, 1, 421, 4728, 11132, 11254, 6391, 2110, 376, 32, 1, 1, 776, 11804, 34558, 42099, 29388, 12758, 3354, 493, 36, 1
Offset: 1

Views

Author

R. J. Mathar, May 22 2019

Keywords

Comments

The sequence counts the fixed n-ominoes with prescribed bounding box width w and variable height w <= h <= n.

Examples

			T(3,2) = 4 counts the 4 variants of the L-shaped tromino rotated by multiples of 90 degrees. T(4,2) = 9 counts one O-tetromino in a 2 X 2 box, 4 L-tetrominoes in a 3 X 2 box, 2 T-tetromoes in a 3 X 2 box, and 2 Z-tetrominoes in a 3 X 2 box.
The triangle starts
  1;
  1,   1;
  1,   4,   1;
  1,   9,   8,   1;
  1,  18,  31,  12,   1;
  1,  35,  95,  68,  16,   1;
  1,  66, 269, 282, 121,  20,   1;
		

Crossrefs

Cf. A027053 (column w=2), A335606 (w=3), A001168 (row sums), A273895, A292357 (prescribed w and h).

Formula

T(n,1) = T(n,n) = 1 (the straight n-ominoes).
T(n,n-1) = 4*n-8 for n >= 3 (width n-1 and height 2).
Conjecture: T(n,n-2) = 8*n^2 - 51*n + 86 for n >= 5.
Showing 1-2 of 2 results.