cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A273989 Decimal expansion of the odd Bessel moment t(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

Original entry on oeis.org

6, 6, 0, 3, 4, 4, 8, 6, 9, 0, 1, 8, 6, 7, 2, 3, 5, 7, 8, 3, 7, 2, 6, 6, 8, 3, 1, 7, 0, 5, 9, 9, 4, 2, 6, 3, 8, 5, 4, 2, 4, 1, 9, 9, 1, 6, 9, 6, 8, 7, 3, 8, 5, 8, 3, 0, 0, 8, 0, 3, 5, 8, 7, 5, 5, 3, 8, 9, 4, 9, 5, 8, 6, 8, 3, 7, 9, 9, 4, 4, 5, 4, 1, 0, 9, 8, 1, 0, 7, 2, 0, 1, 2, 1, 7, 5, 3, 2, 7, 6, 8, 4, 2, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, Jun 06 2016

Keywords

Examples

			0.660344869018672357837266831705994263854241991696873858300803587553894...
		

Crossrefs

Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)), A273986 (s(5,5)), A273990 (t(5,3)), A273991 (t(5,5)).

Programs

  • Mathematica
    t[5, 1] = NIntegrate[x*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 105]; RealDigits[t[5, 1]][[1]]
    (* or: *)
    t[5, 1] = 4(7 - 4*Sqrt[3]) EllipticK[1 - 32/(16 + 7*Sqrt[3] - Sqrt[15])] EllipticK[1 - 32/(16 + 7*Sqrt[3] + Sqrt[15])]; RealDigits[t[5, 1], 10, 105][[1]]
    RealDigits[EllipticK[(16 - 7 Sqrt[3] - Sqrt[15])/32] EllipticK[(16 - 7 Sqrt[3] + Sqrt[15])/32]/4, 10, 105][[1]] (* Jan Mangaldan, Jan 06 2017 *)

Formula

Integral_{0..inf} x*BesselI_0(x)^2*BesselK_0(x)^3.
Equals 4(7 - 4*sqrt(3)) EllipticK(1 - 32/(16 + 7*sqrt(3) - sqrt(15))) EllipticK(1 - 32/(16 + 7*sqrt(3) + sqrt(15))).

A273991 Decimal expansion of the odd Bessel moment t(5,5) (see the referenced paper about the elliptic integral evaluations of Bessel moments).

Original entry on oeis.org

1, 0, 4, 3, 2, 9, 7, 3, 6, 7, 3, 8, 6, 8, 7, 1, 3, 4, 4, 9, 1, 8, 9, 3, 1, 6, 0, 7, 8, 9, 4, 7, 7, 1, 2, 2, 1, 7, 5, 6, 6, 1, 6, 3, 3, 1, 2, 2, 6, 9, 1, 5, 5, 7, 8, 8, 6, 8, 8, 3, 2, 5, 5, 8, 9, 8, 6, 6, 2, 7, 1, 0, 9, 6, 4, 3, 9, 2, 2, 0, 2, 2, 6, 7, 7, 4, 2, 1, 1, 5, 0, 6, 3, 5, 6, 8, 4, 2, 6, 1, 0, 8, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 06 2016

Keywords

Examples

			1.0432973673868713449189316078947712217566163312269155788688325589866...
		

Crossrefs

Cf. A073010 (s(3,1)), A121839 (1+s(3,3)), A222068 (s(4,1)), A244854 (2s(4,3)), A273959, A273984 (s(5,1)), A273985 (s(5,3)), A273986 (s(5,5)), A273989 (t(5,1)), A273990 (t(5,3)).

Programs

  • Mathematica
    t[5, 5] = NIntegrate[x^5*BesselI[0, x]^2*BesselK[0, x]^3, {x, 0, Infinity}, WorkingPrecision -> 103];
    RealDigits[t[5, 5]][[1]]

Formula

Integral_{0..inf} x^5*BesselI_0(x)^2*BesselK_0(x)^3.
Conjecture: Equals 76/15 t(5,3) - 16/45 t(5,1).
Showing 1-2 of 2 results.