A273999 Numbers of the form n^2+1 that divide 4^n-1.
1, 5, 17, 257, 46657, 65537, 148997, 67371265, 405458497, 1370776577, 3497539601, 4294967297, 80542440001, 422240040001, 1911029760001, 139251776898727937, 286245437364810001, 6017402415698251777, 18446744073709551617
Offset: 1
Examples
17 = 4^2+1 is a term because divides 4^4-1; 255 / 17 = 15.
Crossrefs
Programs
-
PARI
is(n) = ceil(sqrt(n-1))==sqrtint(n-1) && Mod(4, n)^(sqrtint(n))==1 for(n=0, 1e12, if(is(n^2+1), print1(n^2+1, ", "))) \\ Felix Fröhlich, Jun 06 2016
Formula
a(n) = (A273870(n)-1)^2+1.
Extensions
a(16)-a(19) from Lars Blomberg, Aug 10 2016
Edited by Max Alekseyev, Apr 30 2018
Comments