A274017 Number of n-bead binary necklaces (no turning over allowed) that avoid the subsequence 110.
1, 2, 3, 3, 4, 4, 6, 6, 9, 11, 16, 20, 32, 42, 65, 95, 144, 212, 330, 494, 767, 1171, 1812, 2788, 4342, 6714, 10463, 16275, 25416, 39652, 62076, 97110, 152289, 238839, 375168, 589528, 927556, 1459962, 2300349, 3626243, 5721046, 9030452, 14264310, 22542398, 35646313, 56393863, 89264836, 141358276, 223959712
Offset: 0
Keywords
Examples
The following necklace 1-1 / \ 0 0 | | 1 1 \ / 0-0 contains one instance of the subsequence starting in the upper left corner. Unlike a bracelet, the necklace is oriented. a(8) = 9: 00000000, 00000001, 00000101, 00001001, 00010001, 00010101, 00100101, 01010101, 11111111. a(9) = 11: 000000000, 000000001, 000000101, 000001001, 000010001, 000010101, 000100101, 000101001, 001001001, 001010101, 111111111.
Links
- Petros Hadjicostas and L. Zhang, On cyclic strings avoiding a pattern, Discrete Mathematics, 341 (2018), 1662-1674.
- Petros Hadjicostas, Proof of two formulas for a(n).
- Marko Riedel, Maple code for this sequence.
- Math Stackexchange, Marko Riedel et al. Counting circular sequences.
Crossrefs
Formula
From Petros Hadjicostas, Jan 11 2017: (Start)
For all the formulas below, assume n>=1.
a(n) = 1 + A000358(n). (Notice the different offsets.)
a(n) = 1 + (1/n) * Sum_{d|n} totient(n/d)*(Fibonacci(d-1)+Fibonacci(d+1)).
a(n) = (1/n) * Sum_{d divides n} totient(n/d)*A001612(d).
G.f.: 1/(1-x) + Sum_{k>=1} (phi(k)/k) * log(1/(1-B(x^k))) where B(x) = x*(1+x). (This is a modification of a formula due to Joerg Arndt.)
G.f.: 1 + Sum_{k>=1} (phi(k)/k) * log(1/C(x^k)) where C(x) = (1-x)*(1-B(x)). (End)
a(n) = 1 + (1/n) * Sum_{d|n} A000010(n/d)*A000204(d). [After the second formula above given by Hadjicostas]. - Antti Karttunen, Jan 12 2017
Comments