A274018 Number of n-bead ternary necklaces (no turning over allowed) that avoid the subsequence 110.
1, 3, 6, 10, 21, 42, 103, 237, 603, 1519, 3942, 10257, 27131, 71940, 192462, 516933, 1395636, 3781356, 10283911, 28050600, 76732047, 210414811, 578330649, 1592821005, 4395261552, 12149386569, 33637309323, 93267459520, 258961863288, 719938597227, 2003881480452, 5583818718102, 15575529493713
Offset: 0
Keywords
Examples
The necklace 1--1 / \ 0 0 | | 1 2 \ / 0--0 contains one instance of the subsequence starting in the upper left corner. Unlike a bracelet, the necklace is oriented.
Links
- Math Stackexchange, Marko Riedel et al., Counting circular sequences.
- Marko Riedel, Maple code for this sequence.
Formula
G.f.: 1 - Sum_{n>=1} (phi(n)/n)*log(x^(3*n) - q*x^n + 1), where q=3 is the number of symbols in the alphabet we are using. - Petros Hadjicostas, Sep 12 2017
a(n) = (1/n)*Sum_{d|n} phi(n/d)*A215885(d) for n >= 1. - Petros Hadjicostas, Sep 13 2017
Comments