cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274077 a(n) = n^3 + 4.

Original entry on oeis.org

4, 5, 12, 31, 68, 129, 220, 347, 516, 733, 1004, 1335, 1732, 2201, 2748, 3379, 4100, 4917, 5836, 6863, 8004, 9265, 10652, 12171, 13828, 15629, 17580, 19687, 21956, 24393, 27004, 29795, 32772, 35941, 39308, 42879, 46660, 50657, 54876, 59323, 64004, 68925
Offset: 0

Views

Author

Vincenzo Librandi, Jun 09 2016

Keywords

Crossrefs

Sequences of the type n^3+k: A000578 (k=0), A001093 (k=1), A084380 (k=2), A084378 (k=3), this sequence (k=4), A084381 (k=5), A084382 (k=6), A084377 (k=7).

Programs

  • Magma
    [n^3+4: n in [0..50]];
    
  • Maple
    seq(n^3+4, n=0..100); # Robert Israel, Jun 09 2016
  • Mathematica
    Table[n^3 + 4, {n, 0, 60}]
    Range[0,50]^3+4 (* or *) LinearRecurrence[{4,-6,4,-1},{4,5,12,31},50] (* Harvey P. Dale, Jul 01 2017 *)
  • PARI
    a(n) = n^3 + 4 \\ Felix Fröhlich, Jun 09 2016

Formula

O.g.f.: (4 - 11*x + 16*x^2 - 3*x^3)/(1 - x)^4.
E.g.f.: (x^3 + 3*x^2 + x + 4)*exp(x). - Robert Israel, Jun 09 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).