A274077 a(n) = n^3 + 4.
4, 5, 12, 31, 68, 129, 220, 347, 516, 733, 1004, 1335, 1732, 2201, 2748, 3379, 4100, 4917, 5836, 6863, 8004, 9265, 10652, 12171, 13828, 15629, 17580, 19687, 21956, 24393, 27004, 29795, 32772, 35941, 39308, 42879, 46660, 50657, 54876, 59323, 64004, 68925
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n^3+4: n in [0..50]];
-
Maple
seq(n^3+4, n=0..100); # Robert Israel, Jun 09 2016
-
Mathematica
Table[n^3 + 4, {n, 0, 60}] Range[0,50]^3+4 (* or *) LinearRecurrence[{4,-6,4,-1},{4,5,12,31},50] (* Harvey P. Dale, Jul 01 2017 *)
-
PARI
a(n) = n^3 + 4 \\ Felix Fröhlich, Jun 09 2016
Formula
O.g.f.: (4 - 11*x + 16*x^2 - 3*x^3)/(1 - x)^4.
E.g.f.: (x^3 + 3*x^2 + x + 4)*exp(x). - Robert Israel, Jun 09 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).