cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274104 a(n) = Sum_{k=0..n} (3*k+2)*Catalan(k).

Original entry on oeis.org

2, 7, 23, 78, 274, 988, 3628, 13495, 50675, 191673, 729145, 2786655, 10691111, 41150011, 158825371, 614483086, 2382366586, 9253540456, 36001307656, 140269835866, 547245301906, 2137552658206, 8358366985726, 32715599554876, 128168506456852, 502538379368656, 1971926625140816
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2016

Keywords

Crossrefs

Partial sums of A051960.

Programs

  • Magma
    [(&+[(3*k+2)*Catalan(k): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Jun 30 2024
    
  • Mathematica
    CoefficientList[Series[(1 +2 x -Sqrt[1-4 x])/(2 x Sqrt[1-4 x] (1-x)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2016 *)
  • SageMath
    [sum((3*k+2)*catalan_number(k) for k in range(n+1)) for n in range(41)] # G. C. Greubel, Jun 30 2024

Formula

D-finite with recurrence: (n+1)*a(n) - (3*n+5)*a(n-1) - 2*(3*n-8)*a(n-2) + 4*(2*n-3)*a(n-3) = 0. - R. J. Mathar, Jun 15 2016
G.f.: (1 + 2*x - sqrt(1-4*x))/(2*x*(1-x)*sqrt(1-4*x)). - Ilya Gutkovskiy, Jun 15 2016
a(n) = A014137(n+1) + (n+1)*A000108(n+1) - 1. - G. C. Greubel, Jun 30 2024
From Mélika Tebni, Sep 02 2024: (Start)
a(n) = A006134(n) + A006134(n+1)/2 - 1/2.
E.g.f.: exp(2*x)*(5*BesselI(0, 2*x)/2 + BesselI(1, 2*x)) + exp(x)/2*(3*Integral_{x=-oo..oo} BesselI(0,2*x)*exp(x) dx - 1). (End)