A274112 Number of equivalence classes of ballot paths of length n for the string ddu.
1, 1, 1, 1, 2, 3, 4, 5, 8, 12, 17, 23, 35, 52, 75, 105, 157, 232, 337, 480, 712, 1049, 1529, 2199, 3248, 4777, 6976, 10092, 14869, 21845, 31937, 46377, 68222, 100159, 146536, 213328, 313487, 460023, 673351, 981976, 1441999, 2115350, 3097326, 4522529, 6637879, 9735205, 14257734, 20836827, 30572032, 44829766, 65666593
Offset: 0
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..300
- K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015, Section 3.4.
Programs
-
Maple
A274112 := proc(n) add( (n-4*i+1)/(n-3*i+1)*binomial(n-2*i,i),i=0..n/4) ; end proc: seq(A274112(n),n=0..50) ; # R. J. Mathar, Jun 20 2016
-
Mathematica
a[n_] := Sum[(n - 4*i + 1)/(n - 3*i + 1)*Binomial[n - 2*i, i], {i, 0, n/4} ]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 27 2017, after R. J. Mathar *)
-
PARI
x='x; y='y; Fxy = x*(x^3+x-1)*y^2 + (2*x-1)*y + 1; seq(N) = { my(y0 = 1 + O('x^N), y1=0); for (k = 1, N, y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0); if (y1 == y0, break()); y0 = y1); Vec(y0); }; seq(51) \\ Gheorghe Coserea, Jan 05 2017
Formula
G.f. y satisfies: 0 = x*(x^3+x-1)*y^2 + (2*x-1)*y + 1. - Gheorghe Coserea, Jan 05 2017
G.f.: 1/(1 - x - x^4/(1 - x^4/(1 - x^4/(1 - x^4/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Jul 26 2017
a(n) ~ 3 * (1+r^2)^(n+1) / (7 + 4*r + 8*r^2), where r = A263719 = ((9+sqrt(93))/2)^(1/3)/3^(2/3) - (2/(3*(9+sqrt(93))))^(1/3) = 0.682327803828019327369483739711048256891188581898... is the real root of the equation r^3 + r = 1. - Vaclav Kotesovec, Nov 27 2017
Extensions
a(0)=1 prepended by Gheorghe Coserea, Jan 05 2017