cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A263719 Decimal expansion of the real root r of r^3 + r - 1 = 0.

Original entry on oeis.org

6, 8, 2, 3, 2, 7, 8, 0, 3, 8, 2, 8, 0, 1, 9, 3, 2, 7, 3, 6, 9, 4, 8, 3, 7, 3, 9, 7, 1, 1, 0, 4, 8, 2, 5, 6, 8, 9, 1, 1, 8, 8, 5, 8, 1, 8, 9, 7, 9, 9, 8, 5, 7, 7, 8, 0, 3, 7, 2, 8, 6, 0, 6, 6, 3, 9, 8, 9, 6, 6, 7, 8, 6, 8, 6, 9, 9, 8, 0, 2, 1, 0, 8, 1, 7, 3, 2, 0, 4, 3, 7, 8, 6, 2, 0, 5, 1, 2, 8, 2, 9, 5, 5, 9, 3, 3, 1, 8, 7, 6
Offset: 0

Views

Author

Paul D. Hanna, Oct 24 2015

Keywords

Comments

Constant from Narayana's cows sequence: Limit A000930(n)/A000930(n+1) = r.
Reciprocal of constant described by A092526.

Examples

			0.682327803828019327369483739711048256891188581897998577803728606639896...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ ((Sqrt[93] + 9)/18)^(1/3) - ((Sqrt[93] - 9)/18)^(1/3), 10, 100][[1]] (* G. C. Greubel, May 01 2017 *)
  • PARI
    a(n) = my(r = (sqrt(93)/18 + 1/2)^(1/3) - (sqrt(93)/18 - 1/2)^(1/3)); floor(r*10^(n+1))%10
    for(n=0,120,print1(a(n),", "))
    
  • PARI
    solve(r=0, 1,  r^3 + r - 1 ) \\ Michel Marcus, Oct 25 2015

Formula

r = (sqrt(93)/18 + 1/2)^(1/3) - (sqrt(93)/18 - 1/2)^(1/3).
Constant r satisfies:
(1) 1/(1 - r*i) = (r + r^2*i) where i^2 = -1.
(2) r = real( 1/(1 - r*i) ).
(3) r = norm( 1/(1 - r*i) ).
(4) r = r^2 + r^4.
Equals 1/A092526. - Vaclav Kotesovec, Nov 27 2017

A274115 Number of equivalence classes of Dyck paths of semilength n for the string duu.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 35, 75, 157, 337, 712, 1529, 3248, 6976, 14869, 31937, 68222, 146536, 313487, 673351, 1441999, 3097326, 6637879, 14257734, 30572032, 65666593, 140860379, 302557585, 649202036, 1394434685, 2992721902, 6428118868, 13798302512, 29637567305, 63626933527, 136665012979
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2016

Keywords

Comments

a(n+1) is also the number of Dyck meanders of length n, where catastrophes are allowed. A catastrophe is a direct jump from any altitude > 0 to 0, see the Banderier-Wallner article. - Cyril Banderier, May 30 2019

Crossrefs

Programs

  • Mathematica
    A[x_] = 1 + x/(1 + ((1 + x)(Sqrt[1 - 4x^2] - 1))/(2x)) + O[x]^40;
    CoefficientList[A[x], x] (* Jean-François Alcover, Jul 27 2018, after Gheorghe Coserea *)
  • Maxima
    a(n):=if n<2 then 1 else sum((k+1)*sum((binomial(k+1,2*k+2*i-n+3)*binomial(k+2*i,i))/(k+i+1),i,0,(n-k)/2),k,0,n); /* Vladimir Kruchinin, Feb 14 2019 */
  • PARI
    seq(N) = {
      my(x='x+O('x^N),
         A000108 = 1+x*Ser(vector(N\2, n, binomial(2*n,n)/(n+1)),'x));
      Vec(1+x/(1 - x*(1+x)*subst(A000108,'x,'x^2)));
    };
    seq(37)  \\ Gheorghe Coserea, Jan 06 2017
    

Formula

A(x) = 1 + x/(1 - x*(1+x)*A000108(x^2)). - Gheorghe Coserea, Jan 06 2017
a(n) = Sum_{k=0..n} (k+1)*Sum_{i=0..floor((n-k)/2)} C(k+1,2*k+2*i-n+3)*C(k+2*i,i)/(k+i+1), n>1, a(0)=1,a(1)=1. - Vladimir Kruchinin, Feb 14 2019
D-finite with recurrence (-n+1)*a(n) +2*a(n-1) +7*(n-3)*a(n-2) +3*(n-5)*a(n-3) +(-11*n+53)*a(n-4) +4*(-3*n+16)*a(n-5) +4*(-n+6)*a(n-6)=0. - R. J. Mathar, Sep 27 2020

Extensions

a(0)=1 prepended and more terms from Gheorghe Coserea, Jan 06 2017

A274113 Number of equivalence classes of ballot paths of length n for the string dud.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 7, 11, 16, 26, 39, 63, 95, 154, 235, 381, 585, 948, 1464, 2373, 3682, 5967, 9293, 15060, 23531, 38131, 59741, 96801, 152020, 246310, 387611, 627985, 990027, 1603893, 2532609, 4102726, 6487600, 10509114, 16639214, 26952186, 42722941, 69199472
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 43; y[] = 0; Do[y[x] = (-1+x^2-x^4+(2x-3x^2-2x^3+2x^4+2x^5-2x^6) y[x]^2 + (x^2-x^3-x^4) y[x]^3)/(-1+3x+x^2-3x^3-x^4+ x^5) + O[x]^terms, terms]; CoefficientList[y[x], x] (* Jean-François Alcover, Oct 07 2018 *)
  • PARI
    x='x; y='y;
    Fxy = x^2*(1-x-x^2)*y^3 + 2*x*(1-3/2*x-x^2+x^3+x^4-x^5)*y^2 + (1-3*x-x^2+3*x^3+x^4-3*x^5)*y - 1+x^2-x^4;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(43)  \\ Gheorghe Coserea, Jan 05 2017

Formula

G.f. y satisfies: 0 = x^2*(1-x-x^2)*y^3 + 2*x*(1-3/2*x-x^2+x^3+x^4-x^5)*y^2 + (1-3*x-x^2+3*x^3+x^4-3*x^5)*y - 1+x^2-x^4. - Gheorghe Coserea, Jan 05 2017

Extensions

a(0)=1 prepended by Gheorghe Coserea, Jan 05 2017
Showing 1-3 of 3 results.