cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A025157 Number of partitions of n with distinct parts p(i) such that if i != j, then |p(i) - p(j)| >= 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 19, 22, 25, 28, 32, 36, 41, 46, 52, 58, 66, 73, 82, 91, 102, 113, 126, 139, 155, 171, 190, 209, 232, 255, 282, 310, 342, 375, 413, 452, 497, 544, 596, 651, 713, 778, 850, 927, 1011, 1101, 1200, 1305, 1420, 1544, 1677, 1821, 1977, 2144, 2324, 2519, 2728
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n into distinct parts in which the smallest part is greater than or equal to number of parts. - Vladeta Jovovic, Aug 06 2004

Examples

			a(12) = 6 because we have 12 = 11+1 = 10+2 = 9+3 = 8+4 = 7+4+1.
		

Crossrefs

Column k=3 of A194543.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(n>
          ceil(i*(i+3)/6), 0, b(n, i-1)+b(n-i, min(n-i, i-3))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 26 2022
  • Mathematica
    nn=50; CoefficientList[Series[Sum[x^(j(3j-1)/2)Product[1/(1-x^i), {i, 1, j}], {j, 0, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Jul 21 2013 *)
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=0, N, x^(k*(3*k-1)/2)/prod(j=1, k, 1-x^j))) \\ Seiichi Manyama, Jan 13 2022

Formula

G.f.: sum(i>=1, x^(3*A000217(i)-2*i)/product(j=1..i, 1-x^j)). - Jon Perry, Jul 20 2004
G.f.: sum(n>=0, x^(n*(3*n-1)/2)/prod(k=1..n,1-x^k)). - Joerg Arndt, Jan 29 2011
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*n^(3/4)*r*sqrt(Pi*(1+3*r^2))), where r = A263719 = ((9+sqrt(93))/2)^(1/3)/3^(2/3) - (2/(3*(9+sqrt(93))))^(1/3) = 0.682327803828019327369483739711048256891188581898... is the root of the equation r^3 + r = 1 and c = 3*(log(r))^2/2 + polylog(2, 1-r) = 0.566433354765746647188050807325058683443823543741343518... . - Vaclav Kotesovec, Jan 02 2016

Extensions

Prepended a(0)=1, Joerg Arndt, Jul 21 2013

A092526 Decimal expansion of (2/3)*cos( (1/3)*arccos(29/2) ) + 1/3, the real root of x^3 - x^2 - 1.

Original entry on oeis.org

1, 4, 6, 5, 5, 7, 1, 2, 3, 1, 8, 7, 6, 7, 6, 8, 0, 2, 6, 6, 5, 6, 7, 3, 1, 2, 2, 5, 2, 1, 9, 9, 3, 9, 1, 0, 8, 0, 2, 5, 5, 7, 7, 5, 6, 8, 4, 7, 2, 2, 8, 5, 7, 0, 1, 6, 4, 3, 1, 8, 3, 1, 1, 1, 2, 4, 9, 2, 6, 2, 9, 9, 6, 6, 8, 5, 0, 1, 7, 8, 4, 0, 4, 7, 8, 1, 2, 5, 8, 0, 1, 1, 9, 4, 9, 0, 9, 2, 7, 0, 0, 6, 4, 3, 8
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2004

Keywords

Comments

This is the limit x of the ratio N(n+1)/N(n) for n -> infinity of the Narayana sequence N(n) = A000930(n). The real root of x^3 - x^2 - 1. See the formula section. - Wolfdieter Lang, Apr 24 2015
This is the fourth smallest Pisot number. - Iain Fox, Oct 13 2017
Sometimes called the supergolden ratio or Narayana's cows constant, and denoted by the symbol psi. - Ed Pegg Jr, Feb 01 2019

Examples

			1.46557123187676802665673122521993910802557756847228570164318311124926...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.3.
  • Paul J. Nahin, The Logician and the Engineer, How George Boole and Claude Shannon Created the Information Age, Princeton University Press, Princeton and Oxford, 2013, Chap. 7: Some Combinational Logic Examples, Section 7.1: Channel Capacity, Shannon's Theorem, and Error-Detection Theory, page 120.

Crossrefs

Other Pisot numbers: A060006, A086106, A228777, A293506, A293508, A293509, A293557.
Cf. A381124 (numerators of convergents).
Cf. A381125 (denominators of convergents).

Programs

  • Mathematica
    RealDigits[(2 Cos[ ArcCos[ 29/2]/3] + 1)/3, 10, 111][[1]] (* Robert G. Wilson v, Apr 12 2004 *)
    RealDigits[ Solve[ x^3 - x^2 - 1 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Oct 10 2013 *)
  • PARI
    allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3 - x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b092526.txt", n, " ", d));  \\ Harry J. Smith, Jun 21 2009

Formula

The real root of x^3 - x^2 - 1. - Franklin T. Adams-Watters, Oct 12 2006
The only real irrational root of x^4-x^2-x-1 (-1 is also a root). [Nahim]
Equals (2/3)*cos( (1/3)*arccos(29/2) ) + 1/3.
Equals 1 + A088559.
Equals (1/6)*(116+12*sqrt(93))^(1/3) + 2/(3*(116+12*sqrt(93))^(1/3)) + 1/3. - Vaclav Kotesovec, Dec 18 2014
Equals 1/A263719. - Alois P. Heinz, Apr 15 2018
Equals (1 + 1/r + r)/3 where r = ((29 + sqrt(837))/2)^(1/3). - Peter Luschny, Apr 04 2020
Equals (1/3)*(1 + ((1/2)*(29 + (3*sqrt(93))))^(1/3) + ((1/2)*(29 - 3*sqrt(93)))^(1/3)). See A075778. - Wolfdieter Lang, Aug 17 2022

A003274 Number of key permutations of length n: permutations {a_i} with |a_i - a_{i-1}| = 1 or 2.

Original entry on oeis.org

1, 1, 2, 6, 12, 20, 34, 56, 88, 136, 208, 314, 470, 700, 1038, 1534, 2262, 3330, 4896, 7192, 10558, 15492, 22724, 33324, 48860, 71630, 105002, 153912, 225594, 330650, 484618, 710270, 1040980, 1525660, 2235994, 3277040, 4802768, 7038832, 10315944, 15118786
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A003274:=-(1-z+3*z**2-2*z**3+z**5)/(z**3+z-1)/(z-1)**2; # [Conjectured by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    CoefficientList[Series[-(x^6 - x^5 + x^3 + 2 x^2 - 2 x + 1)/((x^3 + x - 1) (x - 1)^2), {x, 0, 39}], x] (* Michael De Vlieger, Oct 01 2019 *)

Formula

For n > 1, a(n) = 2*A069241(n).
G.f.: -(x^6 - x^5 + x^3 + 2*x^2 - 2*x + 1)/((x^3 + x - 1)*(x-1)^2).
Limit_{n->oo} a(n+1)/a(n) = A092526 = 1/A263719. - Alois P. Heinz, Apr 15 2018

Extensions

Better description and g.f. from Erich Friedman
a(0)=1 prepended and g.f. adapted by Alois P. Heinz, Apr 01 2018

A096401 Number of balanced partitions of n into distinct parts: least part is equal to number of parts.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 10, 11, 13, 14, 17, 18, 21, 23, 26, 28, 32, 35, 39, 43, 48, 53, 59, 65, 72, 80, 88, 97, 107, 118, 129, 142, 155, 171, 186, 204, 222, 244, 265, 290, 315, 345, 374, 409, 443, 484, 524, 571, 618, 673, 727, 790
Offset: 1

Views

Author

Vladeta Jovovic, Aug 06 2004

Keywords

Examples

			a(14)=3 because we have 12+2, 7+4+3 and 6+5+3.
		

Crossrefs

Programs

  • Maple
    G:=sum((x^(m*(3*m-1)/2)-x^(m*(3*m+1)/2))/product(1-x^i,i=1..m),m=1..20): Gser:=series(G,x=0,80): seq(coeff(Gser,x^n),n=1..78); # Emeric Deutsch, Mar 29 2005
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, x^(k*(3*k-1)/2)/prod(j=1, k-1, 1-x^j))) \\ Seiichi Manyama, Jan 15 2022

Formula

G.f.: Sum_{m>=1} (x^(m*(3*m-1)/2)-x^(m*(3*m+1)/2))/Product_{i=1..m} (1-x^i).
a(n) = A025157(n) - A237979(n) = A237977(n) - A237976(n) for n > 0. - Seiichi Manyama, Jan 13 2022
a(n) ~ (1 - A263719) * A025157(n). - Vaclav Kotesovec, Jan 15 2022

Extensions

More terms from Emeric Deutsch, Mar 29 2005

A076725 a(n) = a(n-1)^2 + a(n-2)^4, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 5, 41, 2306, 8143397, 94592167328105, 13345346031444632841427643906, 258159204435047592104207508169153297050209383336364487461
Offset: 0

Views

Author

Michael Somos, Oct 29 2002

Keywords

Comments

a(n) and a(n+1) are relatively prime for n >= 0.
The number of independent sets on a complete binary tree with 2^(n-1)-1 nodes. - Jonathan S. Braunhut (jonbraunhut(AT)usa.net), May 04 2004. For example, when n=3, the complete binary tree with 2 levels has 2^2-1 nodes and has 5 independent sets so a(3)=5. The recursion for number of independent sets splits in two cases, with or without the root node being in the set.
a(10) has 113 digits and is too large to include.

Examples

			a(2) = a(1)^2 + a(0)^4 = 1^2 + 1^4 = 2.
a(3) = a(2)^2 + a(1)^4 = 2^2 + 1^4 = 5.
a(4) = a(3)^2 + a(2)^4 = 5^2 + 2^4 = 41.
a(5) = a(4)^2 + a(3)^4 = 41^2 + 5^4 = 2306.
a(6) = a(5)^2 + a(4)^4 = 2306^2 + 41^4 = 8143397.
a(7) = a(6)^2 + a(5)^4 = 8143397^2 + 2306^4 = 94592167328105.
		

Crossrefs

Programs

  • Maple
    A[0]:= 1: A[1]:= 1:
    for n from 2 to 10 do
      A[n]:= A[n-1]^2 + A[n-2]^4;
    od:
    seq(A[i],i=0..10); # Robert Israel, Aug 21 2017
  • Mathematica
    RecurrenceTable[{a[n] == a[n-1]^2 + a[n-2]^4, a[0] ==1, a[1] == 1}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 18 2014 *)
    NestList[{#[[2]],#[[1]]^4+#[[2]]^2}&,{1,1},10][[All,1]] (* Harvey P. Dale, Jul 03 2021 *)
  • PARI
    {a(n) = if( n<2, 1, a(n-1)^2 + a(n-2)^4)}
    
  • PARI
    {a=[0,0];for(n=1,99,iferr(a=[a[2],log(exp(a*[4,0;0,2])*[1,1]~)],E,return([n,exp(a[2]/2^n)])))} \\ To compute an approximation of the constant c1 = exp(lim_{n->oo} (log a(n))/2^n). \\ M. F. Hasler, May 21 2017
    
  • PARI
    a=vector(20); a[1]=1;a[2]=2; for(n=3, #a, a[n]=a[n-1]^2+a[n-2]^4); concat(1, a) \\ Altug Alkan, Apr 04 2018

Formula

If b(n) = 1 + 1/b(n-1)^2, b(1)=1, then b(n) = a(n)/a(n-1)^2.
Lim_{n->inf} a(n)/a(n-1)^2 = A092526 (constant).
a(n) is asymptotic to c1^(2^n) * c2.
c1 = 1.2897512927198122075..., c2 = 1/A092526 = A263719 = (1/6)*(108 + 12*sqrt(93))^(1/3) - 2/(108 + 12*sqrt(93))^(1/3) = 0.682327803828019327369483739711... is the root of the equation c2*(1 + c2^2) = 1. - Vaclav Kotesovec, Dec 18 2014

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007

A237979 Number of strict partitions of n such that (least part) > number of parts.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 9, 10, 12, 13, 16, 17, 20, 22, 25, 28, 32, 35, 40, 45, 50, 56, 63, 70, 78, 87, 96, 107, 118, 131, 144, 160, 175, 194, 213, 235, 257, 284, 310, 342, 373, 410, 447, 491, 534, 585, 637, 696, 756, 826, 896, 977, 1060, 1153, 1250, 1359, 1471, 1597, 1729, 1874, 2026, 2195, 2371, 2565
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2014

Keywords

Comments

Also the number of partitions into distinct parts with minimal part >= 2 and difference between parts >= 3. [Joerg Arndt, Mar 31 2014]

Examples

			a(9) = 3 counts these partitions:  9, 63, 54.
		

Crossrefs

Programs

  • Mathematica
    z = 50; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
    p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]]
    Table[Count[q[n], p_ /; Min[p] < t[p]], {n, z}]  (* A237976 *)
    Table[Count[q[n], p_ /; Min[p] <= t[p]], {n, z}] (* A237977 *)
    Table[Count[q[n], p_ /; Min[p] == t[p]], {n, z}] (* A096401 *)
    Table[Count[q[n], p_ /; Min[p] > t[p]], {n, z}]  (* A237979 *)
    Table[Count[q[n], p_ /; Min[p] >= t[p]], {n, z}] (* A025157 *)
  • PARI
    N=66; q='q+O('q^N); Vec(-1+sum(n=0, N, q^(n*(3*n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014

Formula

G.f. with a(0)=0: sum(n>=0, q^(n*(3*n+1)/2) / prod(k=1..n, 1-q^k ) ). [Joerg Arndt, Mar 09 2014]
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(Pi*(1 + 3*r^2)) * n^(3/4)), where r = A263719 and c = 3*(log(r))^2/2 + polylog(2, 1-r). - Vaclav Kotesovec, Jan 15 2022
a(n) ~ A263719 * A025157(n). - Vaclav Kotesovec, Jan 15 2022

A069241 Number of Hamiltonian paths in the graph on n vertices {1,...,n}, with i adjacent to j iff |i-j| <= 2.

Original entry on oeis.org

1, 1, 1, 3, 6, 10, 17, 28, 44, 68, 104, 157, 235, 350, 519, 767, 1131, 1665, 2448, 3596, 5279, 7746, 11362, 16662, 24430, 35815, 52501, 76956, 112797, 165325, 242309, 355135, 520490, 762830, 1117997, 1638520, 2401384, 3519416, 5157972, 7559393, 11078847
Offset: 0

Views

Author

Don Knuth, Apr 13 2002

Keywords

Comments

Equivalently, the number of bandwidth-at-most-2 arrangements of a straight line of n vertices.

Examples

			For example, the six Hamiltonian paths when n=4 are 1234, 1243, 1324, 1342, 2134, 3124.
		

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[1,1,1,0,1]]). Matrix(5, (i,j)-> if i=j-1 then 1 elif j=1 then [3,-3,2,-2,1][i] else 0 fi)^n)[1,3]: seq(a(n), n=0..50); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    a[0] = a[1] = a[2] = 1; a[3] = 3; a[4] = 6; a[n_] := a[n] = 3a[n-1] - 3a[n-2] + 2a[n-3] - 2a[n-4] + a[n-5]; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Feb 13 2015 *)
    CoefficientList[Series[(3+x+x^2)/(1-x-x^3)-(2-x)/(1-x)^2,{x,0,60}],x] (* or *) LinearRecurrence[{3,-3,2,-2,1},{1,1,1,3,6},60] (* Harvey P. Dale, Apr 07 2019 *)

Formula

a(n) = A003274(n)/2, n > 1.
a(n) = 3*s(n) + s(n-1) + s(n-2) - 2 - n, where s(n) = A000930(n).
G.f.: (3+x+x^2)/(1-x-x^3) - (2-x)/(1-x)^2.
Lim_{n->infinity} a(n+1)/a(n) = A092526 = 1/A263719. - Alois P. Heinz, Apr 15 2018

A274112 Number of equivalence classes of ballot paths of length n for the string ddu.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 8, 12, 17, 23, 35, 52, 75, 105, 157, 232, 337, 480, 712, 1049, 1529, 2199, 3248, 4777, 6976, 10092, 14869, 21845, 31937, 46377, 68222, 100159, 146536, 213328, 313487, 460023, 673351, 981976, 1441999, 2115350, 3097326, 4522529, 6637879, 9735205, 14257734, 20836827, 30572032, 44829766, 65666593
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2016

Keywords

Crossrefs

Programs

  • Maple
    A274112 := proc(n)
        add( (n-4*i+1)/(n-3*i+1)*binomial(n-2*i,i),i=0..n/4) ;
    end proc:
    seq(A274112(n),n=0..50) ; # R. J. Mathar, Jun 20 2016
  • Mathematica
    a[n_] := Sum[(n - 4*i + 1)/(n - 3*i + 1)*Binomial[n - 2*i, i], {i, 0, n/4} ];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 27 2017, after R. J. Mathar *)
  • PARI
    x='x; y='y;
    Fxy = x*(x^3+x-1)*y^2 + (2*x-1)*y + 1;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(51)  \\ Gheorghe Coserea, Jan 05 2017

Formula

G.f. y satisfies: 0 = x*(x^3+x-1)*y^2 + (2*x-1)*y + 1. - Gheorghe Coserea, Jan 05 2017
G.f.: 1/(1 - x - x^4/(1 - x^4/(1 - x^4/(1 - x^4/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Jul 26 2017
a(n) ~ 3 * (1+r^2)^(n+1) / (7 + 4*r + 8*r^2), where r = A263719 = ((9+sqrt(93))/2)^(1/3)/3^(2/3) - (2/(3*(9+sqrt(93))))^(1/3) = 0.682327803828019327369483739711048256891188581898... is the real root of the equation r^3 + r = 1. - Vaclav Kotesovec, Nov 27 2017

Extensions

a(0)=1 prepended by Gheorghe Coserea, Jan 05 2017

A341534 Number of possible final configurations in a biased cake-cutting procedure for n people.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 43, 45, 47, 48, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Luc Rousseau, Feb 13 2021

Keywords

Comments

A cake of size 1 is to be divided between n people. The cutter iterates the following procedure: to obtain a new piece of the cake, he cuts the biggest piece into two subpieces (if several pieces are biggest ex aequo, he cuts just one of them); the cut is biased in the proportions t versus 1-t, where t is a constant real number between 1/2 and 1. We will assume that t is transcendental. After the procedure is applied, each piece's size is clearly t^x*(1-t)^y for some (x,y), ordered pair of nonnegative integers. The obtained ordered multiset of t^x*(1-t)^y polynomials depends on t and n; we shall call this the f(t,n) configuration. By definition a(n) is Card({f(t,n); t varies}), i.e., the number of configurations that the procedure for n people can possibly generate, when one does not know the value of t before it starts.
The problem boils down to a geometrical one, where one has to compare the Y-coordinates of rotated lattice points, the angle of rotation depending on t: tan(angle)=log(1-t)/log(t). See SVG link.

Examples

			=========================================================================
  1 |    2    |          3          |                4                  |
=========================================================================
    |         |                     | t^3 > 1-t > t*(1-t) > t^2*(1-t)   |
    |         | t^2 > 1-t > t*(1-t) +-----------------------------------+
    |         |                     | 1-t > t^3 > t*(1-t) > t^2*(1-t)   |
  1 | t > 1-t +---------------------+-----------------------------------+
    |         | 1-t > t^2 > t*(1-t) | t^2 > t*(1-t) = t*(1-t) > (1-t)^2 |
=========================================================================
n=1: the whole cake is the only piece, a(1) = 1.
n=2: the first division necessarily divided 1 into t and 1-t; t and 1-t are necessarily ordered this way: t > 1-t. a(2) = 1.
n=3: the second division necessarily divided t into t^2 and t*(1-t); t*(1-t) is necessarily smaller than both t^2 and 1-t; but either t^2 or 1-t may be the biggest: it depends on whether t < 1/phi or t > 1/phi, where phi denotes the golden ratio; so there are two cases and a(3) = 2.
n=4:
  * in the case when t^2 > 1-t, the third division divided t^2 into t^3 and t^2*(1-t); t^2*(1-t) is necessarily smaller than t*(1-t) which is necessarily smaller than both t^3 and 1-t; but either t^3 or 1-t may be the biggest: it depends on whether t < 1/psi or t > 1/psi, where psi denotes the constant described in A092586 (sometimes called the supergolden ratio); so there are two subcases;
  * in the case when 1-t > t^2, the third division divided 1-t into t*(1-t) and (1-t)^2; the order of the elements is fully determined without requiring new assumptions on t, so there is just one subcase;
  * gathering all subcases contributions yields a(4) = 3.
		

Crossrefs

Cf. A094214, A001622 (1/phi, phi).
Cf. A263719, A092586 (1/psi, psi).

Programs

  • Java
    // See Rousseau link.

A376707 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} 1/(1 - x^j)^3.

Original entry on oeis.org

1, 1, 3, 7, 13, 24, 41, 70, 114, 186, 293, 459, 703, 1067, 1593, 2359, 3447, 4998, 7175, 10222, 14445, 20277, 28263, 39156, 53922, 73843, 100587, 136331, 183890, 246909, 330094, 439453, 582738, 769782, 1013169, 1328805, 1736942, 2263018, 2939280, 3806072, 4914221
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 02 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^(k*(k+1)/2)/Product[1-x^j, {j, 1, k}]^3, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ r^(1/6) * (log(r)^2 + 6*polylog(2, 1-r))^(3/4) * exp(sqrt(2*(log(r)^2 + 6*polylog(2, 1-r))*n)) / (2^(11/4) * Pi^(3/2) * sqrt(1 + 2*r) * n^(5/4)), where r = 1 - A263719 = 0.3176721961719... is the real root of the equation r = (1-r)^3.
Showing 1-10 of 10 results.