cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274169 Decimal expansion of 1/exp(exp(1)-1).

Original entry on oeis.org

1, 7, 9, 3, 7, 4, 0, 7, 8, 7, 3, 4, 0, 1, 7, 1, 8, 1, 9, 6, 1, 9, 8, 9, 5, 8, 7, 3, 1, 8, 3, 1, 6, 4, 9, 8, 4, 5, 9, 6, 8, 1, 6, 0, 1, 7, 5, 8, 9, 1, 5, 6, 1, 3, 1, 5, 7, 3, 7, 0, 4, 2, 1, 6, 0, 2, 4, 8, 3, 7, 6, 0, 8, 1, 1, 6, 4, 5, 7, 2, 8, 8, 0, 1, 3, 0, 9, 4, 1, 4, 1, 1, 2, 4, 3, 8, 0, 0, 4, 6, 0, 5, 6, 0
Offset: 0

Views

Author

Geoffrey Critzer, Jun 11 2016

Keywords

Comments

This is the limiting value of the probability that a random n-permutation will have no cycles of length less than k (for any k) as n goes to infinity. For example, the probability (as n goes to infinity) that a random n-permutation has no fixed points is 1/exp(1). The probability that it has no cycles of length 1 or 2 is 1/exp(1+1/2). The probability that it has no cycles of length 1 or 2 or 3 is 1/exp(1+1/2+1/3!)...

Examples

			0.1793740787340171819619895873183164984596816...
		

Crossrefs

Programs

  • Maple
    Digits:=100: evalf(1/exp(exp(1)-1)); # Wesley Ivan Hurt, Jun 11 2016
  • Mathematica
    RealDigits[1/E^(E - 1), 10, 50][[1]]
  • PARI
    1/exp(exp(1)-1) \\ Michel Marcus, Jun 12 2016

Formula

Equals 1/A234473. - Michel Marcus, Jun 12 2016