A274052
Number of factor-free Dyck words with slope 5/2 and length 7n.
Original entry on oeis.org
1, 3, 13, 94, 810, 7667, 76998, 805560, 8684533, 95800850, 1076159466, 12268026894, 141565916433, 1650395185407, 19409211522550, 229984643863260, 2743097412254490, 32907239462485422, 396793477697214450, 4806417317271974580, 58460150525944945840, 713685698665966837135, 8742060290902752902340
Offset: 0
a(2) = 13 since there are 13 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (4,10) that stay below the line y=5/2x and also do not contain a proper subpath of small size; e.g., EEENNNENNNNNNN is a factor-free Dyck word but ENNEENENNNNNNN contains the factor ENENNNN.
- Cyril Banderier and Michael Wallner, Lattice paths of slope 2/5, 2015 Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics (ANALCO).
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, On rational Dyck paths and the enumeration of factor-free Dyck words, arXiv:1606.02183 [math.CO], 2016.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, On factor-free Dyck words with half-integer slope, arXiv:1804.11244 [math.CO], 2018.
- P. Duchon, On the enumeration and generation of generalized Dyck words, Discrete Mathematics, 225 (2000), 121-135.
A274244
Number of factor-free Dyck words with slope 7/2 and length 9n.
Original entry on oeis.org
1, 4, 34, 494, 8615, 165550, 3380923, 71999763, 1580990725, 35537491360, 813691565184, 18911247654404, 444978958424224, 10579389908116344, 253756528273411250, 6133110915783398175, 149219383150626519874, 3651756292682801022384, 89830021324956206790496, 2219945238901447637080235, 55088272581138888326634644
Offset: 0
a(2) = 34 since there are 34 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (4,14) that stay below the line y=7/2x and also do not contain a proper subpath of small size; e.g., EEENNNNENNNNNNNNNN is a factor-free Dyck word but EEENNENNNNNNNNNNNN contains the factor ENNENNNNN.
A274256
Number of factor-free Dyck words with slope 9/2 and length 11n.
Original entry on oeis.org
1, 5, 70, 1696, 49493, 1593861, 54591225, 1950653202, 71889214644, 2712628146949, 104277713515456, 4069334248174800, 160785480249706192, 6419443865094494044, 258585021917711797850, 10496205397574996367474, 428899108081734423242550, 17628723180468295514015268, 728347675604866545590505024
Offset: 0
a(2) = 70 since there are 70 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (4,18) that stay below the line y=9/2x and also do not contain a proper subpath of small size; e.g., ENNENNENNNNNNENNNNNNNN is a factor-free Dyck word but ENEENENNNNNNNNNNNNNNNN contains the factor ENENNNNNNNN.
A274259
Number of factor-free Dyck words with slope 7/3 and length 10n.
Original entry on oeis.org
1, 12, 570, 44689, 4223479, 441010458, 49014411306, 5685822210429, 680500195656621, 83406972284096638, 10416465145620729162, 1320749077779826216029, 169570747575202480367168, 22000830732097549119672094, 2880094468241888675318895339, 379941591968957300338548388051, 50458777676743899501139029335858
Offset: 0
a(2) = 570 since there are 570 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,14) that stay below the line y=7/3x and also do not contain a proper subpath of small size; e.g., ENNENENNNENNENNNENNN is a factor-free Dyck word but ENNENNENNEENNNNNENNN contains the factor ENNEENNNNN.
A274258
Number of factor-free Dyck words with slope 5/3 and length 8n.
Original entry on oeis.org
1, 7, 133, 4140, 154938, 6398717, 281086555, 12882897819, 609038885805, 29481041746958, 1453894927584477, 72789271870852237, 3689808842747726368, 189006099916444293090, 9768094831949586349262, 508712466332195692590121, 26670630123516854616641671, 1406503552584980596900001922, 74559627811441047591493767590
Offset: 0
a(2) = 133 since there are 133 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,10) that stay below the line y=5/3x and also do not contain a proper subpath of small size; e.g., ENEEEENNNNENNNNN is a factor-free Dyck word but ENEENNENNNEENNNN contains the factor EENNENNN.
Showing 1-5 of 5 results.
Comments