cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A274052 Number of factor-free Dyck words with slope 5/2 and length 7n.

Original entry on oeis.org

1, 3, 13, 94, 810, 7667, 76998, 805560, 8684533, 95800850, 1076159466, 12268026894, 141565916433, 1650395185407, 19409211522550, 229984643863260, 2743097412254490, 32907239462485422, 396793477697214450, 4806417317271974580, 58460150525944945840, 713685698665966837135, 8742060290902752902340
Offset: 0

Views

Author

Michael D. Weiner, Jun 08 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (2n,5n) that stay below the line y = 5/2x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 13 since there are 13 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (4,10) that stay below the line y=5/2x and also do not contain a proper subpath of small size; e.g., EEENNNENNNNNNN is a factor-free Dyck word but ENNEENENNNNNNN contains the factor ENENNNN.
		

Crossrefs

Factor-free Dyck words: A005807 (slope 3/2), A274244 (slope 7/2), A274256 (slope 9/2), A274257 (slope 4/3), A274259 (slope 7/3).

Formula

Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(7*n, 2*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/7) = 1 + 3*x + 13*x^2 + 94*x^3 + ... . Equivalently, [x^n]( A(x)^(7*n) ) = binomial(7*n, 2*n) for n = 0,1,2,... . - Peter Bala, Jan 01 2020

A274244 Number of factor-free Dyck words with slope 7/2 and length 9n.

Original entry on oeis.org

1, 4, 34, 494, 8615, 165550, 3380923, 71999763, 1580990725, 35537491360, 813691565184, 18911247654404, 444978958424224, 10579389908116344, 253756528273411250, 6133110915783398175, 149219383150626519874, 3651756292682801022384, 89830021324956206790496, 2219945238901447637080235, 55088272581138888326634644
Offset: 0

Views

Author

Michael D. Weiner, Jun 15 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (2n,7n) that stay below the line y=7/2x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 34 since there are 34 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (4,14) that stay below the line y=7/2x and also do not contain a proper subpath of small size; e.g., EEENNNNENNNNNNNNNN is a factor-free Dyck word but EEENNENNNNNNNNNNNN contains the factor ENNENNNNN.
		

Crossrefs

Factor-free Dyck words: A005807 (slope 3/2), A274052 (slope 5/2), A274256 (slope 9/2), A274257 (slope 4/3), A274259 (slope 7/3).
Cf. A060941.

Formula

Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(9*n, 2*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/9) = 1 + 4*x + 34*x^2 + 494*x^3 + ... . Equivalently, [x^n]( A(x)^(9*n) ) = binomial(9*n, 2*n) for n = 0,1,2,... . - Peter Bala, Jan 01 2020

A274257 Number of factor-free Dyck words with slope 4/3 and length 7n.

Original entry on oeis.org

1, 5, 52, 880, 17856, 399296, 9491008, 235274240, 6014201600, 157387037696, 4195621863424, 113534211297280, 3110485641494528, 86107512380129280, 2404899661362184192, 67680890349732102144, 1917436905101367443456, 54640222663002565640192, 1565130555077611323392000, 45039415225401829826232320
Offset: 0

Views

Author

Michael D. Weiner, Jun 16 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,4n) that stay below the line y=4/3x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 52 since there are 52 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,8) that stay below the line y=4/3x and also do not contain a proper subpath of small size; e.g., EENEENENNENNNN is a factor-free Dyck word but ENEEENNENNENNN contains the factor EENNENN.
		

Crossrefs

Cf. A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274256 (slope 9/2), A274258 (slope 5/3), A274259 (slope 7/3).

Programs

  • Mathematica
    m = 20; f[_] = 0;
    Do[f[x_] = (1/(x+1)^4)(-(x^2 (x+1) f[x]^4) + x f[x]^6 + (x-1) x f[x]^5 - (x - 3) x (x+1)^2 f[x]^3 + x (x+1)^3 f[x]^2 + (x+1)^5) + O[x]^m, {m}];
    CoefficientList[f[x], x] (* Jean-François Alcover, Sep 28 2019 *)

Formula

G.f. satisfies: 0 = x*f^6 + x*(x-1)*f^5 - x^2*(x+1)*f^4 - x*(x-3)*(x+1)^2*f^3 + x*(x+1)^3*f^2 - (x+1)^4*f + (x+1)^5. - Michael D. Weiner, Jan 14 2019
Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(7*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/7) = 1 + 5*x + 52*x^2 + 880*x^3 + .... Equivalently, [x^n]( A(x)^(7*n) ) = binomial(7*n, 3*n) for n = 0,1,2,.... - Peter Bala, Jan 01 2020

A274259 Number of factor-free Dyck words with slope 7/3 and length 10n.

Original entry on oeis.org

1, 12, 570, 44689, 4223479, 441010458, 49014411306, 5685822210429, 680500195656621, 83406972284096638, 10416465145620729162, 1320749077779826216029, 169570747575202480367168, 22000830732097549119672094, 2880094468241888675318895339, 379941591968957300338548388051, 50458777676743899501139029335858
Offset: 0

Views

Author

Michael D. Weiner, Jun 16 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,7n) that stay below the line y=7/3x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 570 since there are 570 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,14) that stay below the line y=7/3x and also do not contain a proper subpath of small size; e.g., ENNENENNNENNENNNENNN is a factor-free Dyck word but ENNENNENNEENNNNNENNN contains the factor ENNEENNNNN.
		

Crossrefs

Factor-free Dyck words: A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274256 (slope 9/2), A274257 (slope 4/3), A274258 (slope 5/3).

Formula

Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(10*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/10) = 1 + 12*x + 570*x^2 + 44689*x^3 + ... . Equivalently, [x^n]( A(x)^(10*n) ) = binomial(10*n, 3*n) for n = 0,1,2,... . - Peter Bala, Jan 03 2020

A300388 The number of paths of length 11*n from the origin to the line y = 2*x/9 with unit East and North steps that stay below the line or touch it.

Original entry on oeis.org

1, 5, 345, 35246, 4255288, 563796161, 79264265868, 11612106079203, 1753402118587333, 270965910076404428, 42648418241303137766, 6813002989827352100145, 1101807202785456951146158, 180034116076502209139781574, 29677341363243548521326632028, 4929368173228370040701922315332
Offset: 0

Views

Author

Bryan T. Ek, Mar 04 2018

Keywords

Comments

Equivalent to nonnegative walks from (0,0) to (11*n,0) with step set [1,2], [1,-9].

Examples

			For n=1, the walks are EEEEEEEEENN, EEEEEEEENEN, EEEEEEENEEN, EEEEEENEEEN, EEEEENEEEEN.
		

Crossrefs

Programs

  • Mathematica
    terms = 16; f[_] = 0;
    Do[f[t_] = f[t]^55 t^5 + 4 f[t]^46 t^4 - f[t]^45 t^4 + 5 f[t]^44 t^4 + 6 f[t]^37 t^3 - 3 f[t]^36 t^3 + 12 f[t]^35 t^3 - 4 f[t]^34 t^3 + 10 f[t]^33 t^3 + 4 f[t]^28 t^2 - 3 f[t]^27 t^2 + 9 f[t]^26 t^2 - 6 f[t]^25 t^2 + 12 f[t]^24 t^2 - 6 f[t]^23 t^2 + 10 f[t]^22 t^2 + f[t]^19 t - f[t]^18 t + 2 f[t]^17 t - 2 f[t]^16 t + 3 f[t]^15 t - 3 f[t]^14 t + 4 f[t]^13 t - 4 f[t]^12 t + 5 f[t]^11 t + 1 + O[t]^terms, {terms}];
    CoefficientList[f[t], t] (* Jean-François Alcover, Dec 04 2018 *)
    nmax = 20; CoefficientList[Series[Exp[Sum[Binomial[11*k, 2*k]*x^k/(11*k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2021 *)

Formula

G.f. satisfies: f = f^55*t^5 + 4*f^46*t^4 - f^45*t^4 + 5*f^44*t^4 + 6*f^37*t^3 - 3*f^36*t^3 + 12*f^35*t^3 - 4*f^34*t^3 + 10*f^33*t^3 + 4*f^28*t^2 - 3*f^27*t^2 + 9*f^26*t^2 - 6*f^25*t^2 + 12*f^24*t^2 - 6*f^23*t^2 + 10*f^22*t^2 + f^19*t - f^18*t + 2*f^17*t - 2*f^16*t + 3*f^15*t - 3*f^14*t + 4*f^13*t - 4*f^12*t + 5*f^11*t + 1.
From Peter Bala, Jan 03 2019: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} (1/11)*binomial(11*n, 2*n)*x^n/n ) - Bizley. Cf. A274256.
Recurrence: a(0) = 1 and a(n) = (1/n) * Sum_{k = 0..n-1} (1/11)*binomial(11*n-11*k, 2*n-2*k)*a(k) for n >= 1. (End)
The sequence defined by b(n) := [x^n] A(x)^n begins [1, 5, 715, 116213, 19954187, 3532860880, 637870220023, 116749388814357, ...] and conjecturally satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 5 except for p = 11 (checked up to p = 101). - Peter Bala, Sep 14 2021
a(n) ~ c * 11^(11*n) / (n^(3/2) * 2^(2*n) * 3^(18*n)), where c = 0.0304820662333129164912550234496338371466905844787974500412037592866845093... - Vaclav Kotesovec, Sep 16 2021

A274258 Number of factor-free Dyck words with slope 5/3 and length 8n.

Original entry on oeis.org

1, 7, 133, 4140, 154938, 6398717, 281086555, 12882897819, 609038885805, 29481041746958, 1453894927584477, 72789271870852237, 3689808842747726368, 189006099916444293090, 9768094831949586349262, 508712466332195692590121, 26670630123516854616641671, 1406503552584980596900001922, 74559627811441047591493767590
Offset: 0

Views

Author

Michael D. Weiner, Jun 16 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,5n) that stay below the line y=5/3x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 133 since there are 133 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,10) that stay below the line y=5/3x and also do not contain a proper subpath of small size; e.g., ENEEEENNNNENNNNN is a factor-free Dyck word but ENEENNENNNEENNNN contains the factor EENNENNN.
		

Crossrefs

Factor-free Dyck words: A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274256 (slope 9/2), A274257 (slope 4/3), A274259 (slope 7/3).

Formula

Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(8*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/8) = 1 + 7*x + 133*x^2 + 4140*x^3 + ... . Equivalently, [x^n]( A(x)^(8*n) ) = binomial(8*n, 3*n) for n = 0,1,2,... . - Peter Bala, Jan 01 2020
Showing 1-6 of 6 results.