cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A005807 Sum of adjacent Catalan numbers.

Original entry on oeis.org

2, 3, 7, 19, 56, 174, 561, 1859, 6292, 21658, 75582, 266798, 950912, 3417340, 12369285, 45052515, 165002460, 607283490, 2244901890, 8331383610, 31030387440, 115948830660, 434542177290, 1632963760974, 6151850548776
Offset: 0

Views

Author

Keywords

Comments

The aerated sequence has Hankel transform F(n+2)*F(n+3) (A001654(n+2)). - Paul Barry, Nov 04 2008

Examples

			G.f. = 2 + 3*x+ 7*x^2 + 19*x^3 + 56*x^4 + 174*x^5 + 561*x^6 + 1859*x^7 + ...
		

References

  • D. E. Knuth, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [((5*n+4)*Factorial(2*n))/(Factorial(n)*Factorial(n+2)): n in [0..30] ];  // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    A005807List := proc(m) local A, P, n; A := [2,3]; P := [2,3];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-2]]);
    A := [op(A), P[-1]] od; A end: A005807List(25); # Peter Luschny, Mar 26 2022
  • Mathematica
    a[n_]:=Binomial[2*n, n]*(5*n+4)/(n+1)/(n+2); (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
    a[ n_] := If[ n < 0, 0, CatalanNumber[n] + CatalanNumber[n + 1]]; (* Michael Somos, Jan 17 2015 *)
    Total/@Partition[CatalanNumber[Range[0,30]],2,1] (* Harvey P. Dale, Jun 21 2025 *)
  • PARI
    {a(n) = if( n<0, 0, binomial(2*n, n) * (5*n+4) / ((n+1) * (n+2)))};
    
  • Python
    from _future_ import division
    A005807_list, b = [], 2
    for n in range(10**3):
        A005807_list.append(b)
        b = b*(4*n+2)*(5*n+9)//((n+3)*(5*n+4)) # Chai Wah Wu, Jan 28 2016
  • Sage
    [catalan_number(i)+catalan_number(i+1) for i in range(0,25)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = C(n)+C(n+1) = ((5*n+4)*(2*n)!)/(n!*(n+2)!).
G.f. A(x) satisfies x^2*A(x)^2 + (x-1)*A(x) + (x+2) = 0. - Michael Somos, Sep 11 2003
G.f.: (1-x - (1+x)*sqrt(1-4*x)) / (2*x^2) = (4+2*x) / (1-x + (1+x)*sqrt(1-4*x)). a(n)*(n+2)*(5*n-1) = a(n-1)*2*(2*n-1)*(5*n+4), n>0. - Michael Somos, Sep 11 2003
a(n) ~ 5*Pi^(-1/2)*n^(-3/2)*2^(2*n)*{1 - 93/40*n^-1 + 625/128*n^-2 - 10227/1024*n^-3 + 661899/32768*n^-4 ...}. - Joe Keane (jgk(AT)jgk.org), Sep 13 2002
G.f.: c(x)*(1+c(x))= (-1 +(1+x)*c(x))/x with the g.f. c(x) of A000108 (Catalan).
a(n) = binomial(2*n,n)/(n+1)*hypergeom([-1,n+1/2],[n+2],-4). - Peter Luschny, Aug 15 2012
D-finite with recurrence (n+2)*a(n) + (-3*n-2)*a(n-1) + 2*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Dec 02 2012
0 = a(n)*(+16*a(n+1) + 38*a(n+2) - 18*a(n+3)) + a(n+1)*(-14*a(n+1) + 19*a(n+2) - 7*a(n+3)) + a(n+2)*(+a(n+2) + a(n+3)) for all n>=0. - Michael Somos, Jan 17 2015
0 = a(n)^2*(+368*a(n+1) - 182*a(n+2)) + a(n)*a(n+1)*(-306*a(n+1) + 317*a(n+2)) + a(n)*a(n+2)*(-77*a(n+2)) + a(n+1)^2*(-14*a(n+1) - 6*a(n+2)) + a(n+1)*a(n+2)*(+8*a(n+2)) for all n>=0. - Michael Somos, Jan 17 2015
E.g.f.: (BesselI(0,2*x) - (x - 1)*BesselI(1,2*x)/x)*exp(2*x). - Ilya Gutkovskiy, Jun 08 2016
G.f. with 1 prepended: Let E(x) = exp( Sum_{n >= 1} binomial(5*n,2*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/5) = ( x/series reversion of x*D(x)^5 )^(1/5), where D(x) = 1 + 2*x + 23*x^2 + 371*x^3 + ... is the o.g.f. for A060941 .... Cf. A274052 and A274244. - Peter Bala, Jan 01 2020

Extensions

More terms from Joe Keane (jgk(AT)jgk.org), Feb 08 2000
Asymptotic series corrected and extended by Michael Somos, Sep 11 2003

A300386 The number of paths of length 7*n from the origin to the line y = 2*x/5 with unit East and North steps that stay below the line or touch it.

Original entry on oeis.org

1, 3, 76, 2803, 121637, 5782513, 291437249, 15297882929, 827402061954, 45790180469312, 2580588279994441, 147592910517101281, 8544927937132306600, 499811636639428519226, 29491983283370728013309, 1753398440591481772556798, 104933899400256659634374549, 6316334518803437568442071134
Offset: 0

Views

Author

Bryan T. Ek, Mar 04 2018

Keywords

Comments

Equivalent to nonnegative walks from (0,0) to (7*n,0) with step set [1,2], [1,-5].

Examples

			For n=1, the possible walks are EEEEENN, EEEENEN, EEENEEN.
		

Crossrefs

Programs

  • Mathematica
    terms = 18; f[_] = 0;
    Do[f[t_] = f[t]^21 t^3 + 2 f[t]^16 t^2 - f[t]^15 t^2 + 3 f[t]^14 t^2 + f[t]^11 t - f[t]^10 t + 2 f[t]^9 t - 2 f[t]^8 t + 3 f[t]^7 t + 1 + O[t]^terms, {terms}];
    CoefficientList[f[t], t] (* Jean-François Alcover, Dec 04 2018 *)
    nmax = 20; CoefficientList[Series[Exp[Sum[Binomial[7*k, 2*k]*x^k/(7*k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2021 *)

Formula

G.f. satisfies: f=f^21*t^3+2*f^16*t^2-f^15*t^2+3*f^14*t^2+f^11*t-f^10*t+2*f^9*t-2*f^8*t+3*f^7*t+1.
From Peter Bala, Jan 02 2019: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} (1/7)*binomial(7*n, 2*n)*x^n/n ) - Bizley. Cf. A274052.
Recurrence: a(0) = 1 and a(n) = (1/n) * Sum_{k = 0..n-1} (1/7)*binomial(7*n-7*k, 2*n-2*k)*a(k) for n >= 1. (End)
The sequence defined by b(n) := [x^n] A(x)^n begins [1, 3, 161, 9804, 630401, 41789278, 2824792568, 193553976353, ...] and conjecturally satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 11 (checked up to p = 101). - Peter Bala, Sep 14 2021
a(n) ~ c * 7^(7*n) / (n^(3/2) * 2^(2*n) * 5^(5*n)), where c = 0.0538519123304380623474844037127876191519207214308040151922885271364215631... = s*sqrt((3 - 2*s + 2*s^2 - s^3 + s^4 + 6*r*s^7 - 2*r*s^8 + 4*r*s^9 + 3*r^2*s^14) / (63 - 56*s + 72*s^2 - 45*s^3 + 55*s^4 + 273*r*s^7 - 105*r*s^8 + 240*r*s^9 + 210*r^2*s^14)) / (2*sqrt(Pi)), where r = 12500/823543 and s = 1.129379978325... is the root of the equation -16807 + 24010*s - 13720*s^2 + 7350*s^3 - 3500*s^4 + 1250*s^5 = 0. - Vaclav Kotesovec, Sep 16 2021

A274244 Number of factor-free Dyck words with slope 7/2 and length 9n.

Original entry on oeis.org

1, 4, 34, 494, 8615, 165550, 3380923, 71999763, 1580990725, 35537491360, 813691565184, 18911247654404, 444978958424224, 10579389908116344, 253756528273411250, 6133110915783398175, 149219383150626519874, 3651756292682801022384, 89830021324956206790496, 2219945238901447637080235, 55088272581138888326634644
Offset: 0

Views

Author

Michael D. Weiner, Jun 15 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (2n,7n) that stay below the line y=7/2x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 34 since there are 34 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (4,14) that stay below the line y=7/2x and also do not contain a proper subpath of small size; e.g., EEENNNNENNNNNNNNNN is a factor-free Dyck word but EEENNENNNNNNNNNNNN contains the factor ENNENNNNN.
		

Crossrefs

Factor-free Dyck words: A005807 (slope 3/2), A274052 (slope 5/2), A274256 (slope 9/2), A274257 (slope 4/3), A274259 (slope 7/3).
Cf. A060941.

Formula

Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(9*n, 2*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/9) = 1 + 4*x + 34*x^2 + 494*x^3 + ... . Equivalently, [x^n]( A(x)^(9*n) ) = binomial(9*n, 2*n) for n = 0,1,2,... . - Peter Bala, Jan 01 2020

A274256 Number of factor-free Dyck words with slope 9/2 and length 11n.

Original entry on oeis.org

1, 5, 70, 1696, 49493, 1593861, 54591225, 1950653202, 71889214644, 2712628146949, 104277713515456, 4069334248174800, 160785480249706192, 6419443865094494044, 258585021917711797850, 10496205397574996367474, 428899108081734423242550, 17628723180468295514015268, 728347675604866545590505024
Offset: 0

Views

Author

Michael D. Weiner, Jun 16 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (2n,9n) that stay below the line y=9/2x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 70 since there are 70 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (4,18) that stay below the line y=9/2x and also do not contain a proper subpath of small size; e.g., ENNENNENNNNNNENNNNNNNN is a factor-free Dyck word but ENEENENNNNNNNNNNNNNNNN contains the factor ENENNNNNNNN.
		

Crossrefs

Factor-free Dyck words: A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274257 (slope 4/3), A274258 (slope 5/3), A274259 (slope 7/3).

Formula

Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(11*n,2*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/11) = 1 + 5*x + 70*x^2 + 1696*x^3 + ... . Equivalently, [x^n]( A(x)^(11*n) ) = binomial(11*n, 2*n) for n = 0,1,2,... . - Peter Bala, Jan 01 2020

A381772 Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^2 ) )^(1/2), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 11, 83, 727, 6940, 70058, 735502, 7949031, 87851819, 988307647, 11279719247, 130286197186, 1520108988221, 17889102534329, 212095541328931, 2531001870925559, 30376237591559863, 366417240105654587, 4440000077166319993, 54020150448778625847, 659665548217188211288
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((serreverse(x/((1+x)*(1-sqrt(1-4*x))/(2*x))^2)/x)^(1/2))

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x)^2) * C(x*A(x)^2).
a(n) = Sum_{k=0..n} binomial(2*n+2*k+1,k) * binomial(2*n+1,n-k)/(2*n+2*k+1).

A274257 Number of factor-free Dyck words with slope 4/3 and length 7n.

Original entry on oeis.org

1, 5, 52, 880, 17856, 399296, 9491008, 235274240, 6014201600, 157387037696, 4195621863424, 113534211297280, 3110485641494528, 86107512380129280, 2404899661362184192, 67680890349732102144, 1917436905101367443456, 54640222663002565640192, 1565130555077611323392000, 45039415225401829826232320
Offset: 0

Views

Author

Michael D. Weiner, Jun 16 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,4n) that stay below the line y=4/3x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 52 since there are 52 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,8) that stay below the line y=4/3x and also do not contain a proper subpath of small size; e.g., EENEENENNENNNN is a factor-free Dyck word but ENEEENNENNENNN contains the factor EENNENN.
		

Crossrefs

Cf. A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274256 (slope 9/2), A274258 (slope 5/3), A274259 (slope 7/3).

Programs

  • Mathematica
    m = 20; f[_] = 0;
    Do[f[x_] = (1/(x+1)^4)(-(x^2 (x+1) f[x]^4) + x f[x]^6 + (x-1) x f[x]^5 - (x - 3) x (x+1)^2 f[x]^3 + x (x+1)^3 f[x]^2 + (x+1)^5) + O[x]^m, {m}];
    CoefficientList[f[x], x] (* Jean-François Alcover, Sep 28 2019 *)

Formula

G.f. satisfies: 0 = x*f^6 + x*(x-1)*f^5 - x^2*(x+1)*f^4 - x*(x-3)*(x+1)^2*f^3 + x*(x+1)^3*f^2 - (x+1)^4*f + (x+1)^5. - Michael D. Weiner, Jan 14 2019
Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(7*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/7) = 1 + 5*x + 52*x^2 + 880*x^3 + .... Equivalently, [x^n]( A(x)^(7*n) ) = binomial(7*n, 3*n) for n = 0,1,2,.... - Peter Bala, Jan 01 2020

A274259 Number of factor-free Dyck words with slope 7/3 and length 10n.

Original entry on oeis.org

1, 12, 570, 44689, 4223479, 441010458, 49014411306, 5685822210429, 680500195656621, 83406972284096638, 10416465145620729162, 1320749077779826216029, 169570747575202480367168, 22000830732097549119672094, 2880094468241888675318895339, 379941591968957300338548388051, 50458777676743899501139029335858
Offset: 0

Views

Author

Michael D. Weiner, Jun 16 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,7n) that stay below the line y=7/3x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 570 since there are 570 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,14) that stay below the line y=7/3x and also do not contain a proper subpath of small size; e.g., ENNENENNNENNENNNENNN is a factor-free Dyck word but ENNENNENNEENNNNNENNN contains the factor ENNEENNNNN.
		

Crossrefs

Factor-free Dyck words: A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274256 (slope 9/2), A274257 (slope 4/3), A274258 (slope 5/3).

Formula

Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(10*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/10) = 1 + 12*x + 570*x^2 + 44689*x^3 + ... . Equivalently, [x^n]( A(x)^(10*n) ) = binomial(10*n, 3*n) for n = 0,1,2,... . - Peter Bala, Jan 03 2020

A322631 a(n) = 2*binomial(7*n-1,2*n)/(7*n-1).

Original entry on oeis.org

5, 110, 3876, 164450, 7713420, 385300240, 20096692635, 1081790956890, 59647783837425, 3351648108957720, 191230475831922200, 11049110585626417200, 645189590847792998601, 38014810319396501088720, 2257261555792984515847380, 134939208350635886836436490
Offset: 1

Views

Author

Hugo Pfoertner, Dec 21 2018

Keywords

Comments

In 2012, Nakamigawa and Tokushige stated: Let A[x,y] = number of lattice paths starting at (0,0) that stay in y < 2*x/5 + 2/5 and B[x,y] = number of lattice paths starting at (0,0) that stay in y < 2*x/5 + 1/5, then a(t) = A[5*t-1,2*t-1] + B[5*t-1,2*t-1]. Their theorem was mentioned by D. Knuth in Problem 4 "Lattice Paths of Slope 2/5" in his lecture "Problems That Philippe (Flajolet) Would Have Loved". Knuth reported the empirical observation that A[5*t-1,2*t-1]/B[5*t-1,2*t-1] = a - b/t + O(t^-2), with constants a~=1.63026 and b~=0.159. Knuth's conjecture was proved by C. Banderier and M. Wallner, who also found the exact values of a and b. Numerical values of a and b are provided in A322632 and A322633.

Examples

			  A[i,0] = B[i,0] = 1.
  A[i,j] = if 5*j < 2*i + 2 then A[i-1,j] + A[i,j-1] , else 0.
  \i 1   2   3   4   5   6   7   8   9  10  11  12   13   14
  j --------------------------------------------------------
  0| 1   1   1   1   1   1   1   1   1   1   1   1    1    1
  1| 0   1   2   3   4   5   6   7   8   9  10  11   12   13
  2| 0   0   0   0   4   9  15  22  30  39  49  60   72   85
  3| 0   0   0   0   0   0  15  37  67 106 155 215  287  372
  4| 0   0   0   0   0   0   0   0   0 106 261 476  763 1135
  5| 0   0   0   0   0   0   0   0   0   0   0 476 1239 2374
.
  B[i,j] = if 5*j < 2*i + 1 then B[i-1,j] + B[i,j-1], else 0.
  \i 1   2   3   4   5   6   7   8   9  10  11  12   13   14
  j --------------------------------------------------------
  0| 1   1   1   1   1   1   1   1   1   1   1   1    1    1
  1| 0   0   1   2   3   4   5   6   7   8   9  10   11   12
  2| 0   0   0   0   3   7  12  18  25  33  42  52   63   75
  3| 0   0   0   0   0   0   0  18  43  76 118 170  233  308
  4| 0   0   0   0   0   0   0   0   0  76 194 364  597  905
  5| 0   0   0   0   0   0   0   0   0   0   0   0  597 1502
.
  A+B:
  \i 1   2   3   4   5   6   7   8   9  10  11  12   13   14
  j --------------------------------------------------------
  0| 2   2   2   2   2   2   2   2   2   2   2   2    2    2
  1| 0   1   3   5   7   9  11  13  15  17  19  21   23   25
  2| 0   0   0   0   7  16  27  40  55  72  91 112  135  160
  3| 0   0   0   0   0   0  15  55 110 182 273 385  520  680
  4| 0   0   0   0   0   0   0   0   0 182 455 840 1360 2040
  5| 0   0   0   0   0   0   0   0   0   0   0 476 1836 3876
.
  t = 1: a(1) = 5 because
  A[5*1-1,2*1-1] = A[4,1] = 3, B[4,1] = 2,  A[4,1]+B[4,1] = 5;
  t = 2: a(2) = 110 because
  A[5*2-1,2*2-1] = A[9,3] = 67, B[9,3] = 43,  A[9,3]+B[9,3] = 110;
  t = 3: a(3) = 3876 because
  A[5*3-1,2*3-1] = A[14,5] = 2374, B[14,5] = 1502,  A[14,5]+B[14,5] = 3876.
		

Crossrefs

Programs

  • Maple
    a:=n->2*binomial(7*n-1,2*n)/(7*n-1): seq(a(n),n=1..20); # Muniru A Asiru, Dec 21 2018
  • PARI
    for(t=1,16,print1(binomial(7*t-1,2*t)*(2/(7*t-1)),", "))

Formula

From Robert Israel, Dec 23 2018: (Start)
7*(7*n + 4)*(7*n + 1)*(7*n + 5)*(7*n + 2)*(7*n - 1)*(7*n + 3)*a(n) - 10*(5*n + 1)*(5*n + 2)*(2*n + 1)*(5*n + 3)*(5*n + 4)*(n + 1)*a(n + 1) = 0.
G.f.: 5*x*hypergeom([6/7, 1, 8/7, 9/7, 10/7, 11/7, 12/7], [6/5, 7/5, 3/2, 8/5, 9/5, 2], (823543*x)*1/12500)
a(n) ~ sqrt(35/Pi)*(823543/12500)^n/(49*n^(3/2)). (End)

A274258 Number of factor-free Dyck words with slope 5/3 and length 8n.

Original entry on oeis.org

1, 7, 133, 4140, 154938, 6398717, 281086555, 12882897819, 609038885805, 29481041746958, 1453894927584477, 72789271870852237, 3689808842747726368, 189006099916444293090, 9768094831949586349262, 508712466332195692590121, 26670630123516854616641671, 1406503552584980596900001922, 74559627811441047591493767590
Offset: 0

Views

Author

Michael D. Weiner, Jun 16 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,5n) that stay below the line y=5/3x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 133 since there are 133 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,10) that stay below the line y=5/3x and also do not contain a proper subpath of small size; e.g., ENEEEENNNNENNNNN is a factor-free Dyck word but ENEENNENNNEENNNN contains the factor EENNENNN.
		

Crossrefs

Factor-free Dyck words: A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274256 (slope 9/2), A274257 (slope 4/3), A274259 (slope 7/3).

Formula

Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(8*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/8) = 1 + 7*x + 133*x^2 + 4140*x^3 + ... . Equivalently, [x^n]( A(x)^(8*n) ) = binomial(8*n, 3*n) for n = 0,1,2,... . - Peter Bala, Jan 01 2020
Showing 1-9 of 9 results.