A005807
Sum of adjacent Catalan numbers.
Original entry on oeis.org
2, 3, 7, 19, 56, 174, 561, 1859, 6292, 21658, 75582, 266798, 950912, 3417340, 12369285, 45052515, 165002460, 607283490, 2244901890, 8331383610, 31030387440, 115948830660, 434542177290, 1632963760974, 6151850548776
Offset: 0
G.f. = 2 + 3*x+ 7*x^2 + 19*x^3 + 56*x^4 + 174*x^5 + 561*x^6 + 1859*x^7 + ...
- D. E. Knuth, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Daniel Birmajer, Juan B. Gil, Michael D. Weiner, On rational Dyck paths and the enumeration of factor-free Dyck words, arXiv:1606.02183 [math.CO], (7-June-2016); see p. 9
- Aleksandar Cvetkovic, Predrag Rajkovic and Milos Ivkovic, Catalan Numbers, the Hankel Transform and Fibonacci Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.3
- Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832; http://dx.doi.org/10.4134/CKMS.2013.28.4.827.
- Manuel Flores, Yuta Kimura, Baptiste Rognerud, Combinatorics of quasi-hereditary structures, arXiv:2004.04726 [math.RT], 2020.
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 431
- Qi Wang, Tau-tilting finite simply connected algebras, arXiv:1910.01937 [math.RT], 2019.
- Fumitaka Yura, Hankel Determinant Solution for Elliptic Sequence, arXiv:1411.6972 [nlin.SI], (25-November-2014); see p. 7.
-
[((5*n+4)*Factorial(2*n))/(Factorial(n)*Factorial(n+2)): n in [0..30] ]; // Vincenzo Librandi, Aug 19 2011
-
A005807List := proc(m) local A, P, n; A := [2,3]; P := [2,3];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-2]]);
A := [op(A), P[-1]] od; A end: A005807List(25); # Peter Luschny, Mar 26 2022
-
a[n_]:=Binomial[2*n, n]*(5*n+4)/(n+1)/(n+2); (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
a[ n_] := If[ n < 0, 0, CatalanNumber[n] + CatalanNumber[n + 1]]; (* Michael Somos, Jan 17 2015 *)
Total/@Partition[CatalanNumber[Range[0,30]],2,1] (* Harvey P. Dale, Jun 21 2025 *)
-
{a(n) = if( n<0, 0, binomial(2*n, n) * (5*n+4) / ((n+1) * (n+2)))};
-
from _future_ import division
A005807_list, b = [], 2
for n in range(10**3):
A005807_list.append(b)
b = b*(4*n+2)*(5*n+9)//((n+3)*(5*n+4)) # Chai Wah Wu, Jan 28 2016
-
[catalan_number(i)+catalan_number(i+1) for i in range(0,25)] # Zerinvary Lajos, May 17 2009
More terms from Joe Keane (jgk(AT)jgk.org), Feb 08 2000
Asymptotic series corrected and extended by
Michael Somos, Sep 11 2003
A300386
The number of paths of length 7*n from the origin to the line y = 2*x/5 with unit East and North steps that stay below the line or touch it.
Original entry on oeis.org
1, 3, 76, 2803, 121637, 5782513, 291437249, 15297882929, 827402061954, 45790180469312, 2580588279994441, 147592910517101281, 8544927937132306600, 499811636639428519226, 29491983283370728013309, 1753398440591481772556798, 104933899400256659634374549, 6316334518803437568442071134
Offset: 0
For n=1, the possible walks are EEEEENN, EEEENEN, EEENEEN.
- M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. [Cached copy]
- Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
-
terms = 18; f[_] = 0;
Do[f[t_] = f[t]^21 t^3 + 2 f[t]^16 t^2 - f[t]^15 t^2 + 3 f[t]^14 t^2 + f[t]^11 t - f[t]^10 t + 2 f[t]^9 t - 2 f[t]^8 t + 3 f[t]^7 t + 1 + O[t]^terms, {terms}];
CoefficientList[f[t], t] (* Jean-François Alcover, Dec 04 2018 *)
nmax = 20; CoefficientList[Series[Exp[Sum[Binomial[7*k, 2*k]*x^k/(7*k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2021 *)
A274244
Number of factor-free Dyck words with slope 7/2 and length 9n.
Original entry on oeis.org
1, 4, 34, 494, 8615, 165550, 3380923, 71999763, 1580990725, 35537491360, 813691565184, 18911247654404, 444978958424224, 10579389908116344, 253756528273411250, 6133110915783398175, 149219383150626519874, 3651756292682801022384, 89830021324956206790496, 2219945238901447637080235, 55088272581138888326634644
Offset: 0
a(2) = 34 since there are 34 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (4,14) that stay below the line y=7/2x and also do not contain a proper subpath of small size; e.g., EEENNNNENNNNNNNNNN is a factor-free Dyck word but EEENNENNNNNNNNNNNN contains the factor ENNENNNNN.
A274256
Number of factor-free Dyck words with slope 9/2 and length 11n.
Original entry on oeis.org
1, 5, 70, 1696, 49493, 1593861, 54591225, 1950653202, 71889214644, 2712628146949, 104277713515456, 4069334248174800, 160785480249706192, 6419443865094494044, 258585021917711797850, 10496205397574996367474, 428899108081734423242550, 17628723180468295514015268, 728347675604866545590505024
Offset: 0
a(2) = 70 since there are 70 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (4,18) that stay below the line y=9/2x and also do not contain a proper subpath of small size; e.g., ENNENNENNNNNNENNNNNNNN is a factor-free Dyck word but ENEENENNNNNNNNNNNNNNNN contains the factor ENENNNNNNNN.
A381772
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^2 ) )^(1/2), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 2, 11, 83, 727, 6940, 70058, 735502, 7949031, 87851819, 988307647, 11279719247, 130286197186, 1520108988221, 17889102534329, 212095541328931, 2531001870925559, 30376237591559863, 366417240105654587, 4440000077166319993, 54020150448778625847, 659665548217188211288
Offset: 0
A274257
Number of factor-free Dyck words with slope 4/3 and length 7n.
Original entry on oeis.org
1, 5, 52, 880, 17856, 399296, 9491008, 235274240, 6014201600, 157387037696, 4195621863424, 113534211297280, 3110485641494528, 86107512380129280, 2404899661362184192, 67680890349732102144, 1917436905101367443456, 54640222663002565640192, 1565130555077611323392000, 45039415225401829826232320
Offset: 0
a(2) = 52 since there are 52 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,8) that stay below the line y=4/3x and also do not contain a proper subpath of small size; e.g., EENEENENNENNNN is a factor-free Dyck word but ENEEENNENNENNN contains the factor EENNENN.
- Daniel Birmajer, Juan B. Gil and Michael D. Weiner, On rational Dyck paths and the enumeration of factor-free Dyck words, arXiv:1606.02183 [math.CO], 2016.
- Daniel Birmajer, Juan B. Gil and Michael D. Weiner, On rational Dyck paths and the enumeration of factor-free Dyck words, Discrete Applied Mathematics, 244 (2018), 36-43.
- P. Duchon, On the enumeration and generation of generalized Dyck words, Discrete Mathematics, 225 (2000), 121-135.
-
m = 20; f[_] = 0;
Do[f[x_] = (1/(x+1)^4)(-(x^2 (x+1) f[x]^4) + x f[x]^6 + (x-1) x f[x]^5 - (x - 3) x (x+1)^2 f[x]^3 + x (x+1)^3 f[x]^2 + (x+1)^5) + O[x]^m, {m}];
CoefficientList[f[x], x] (* Jean-François Alcover, Sep 28 2019 *)
A274259
Number of factor-free Dyck words with slope 7/3 and length 10n.
Original entry on oeis.org
1, 12, 570, 44689, 4223479, 441010458, 49014411306, 5685822210429, 680500195656621, 83406972284096638, 10416465145620729162, 1320749077779826216029, 169570747575202480367168, 22000830732097549119672094, 2880094468241888675318895339, 379941591968957300338548388051, 50458777676743899501139029335858
Offset: 0
a(2) = 570 since there are 570 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,14) that stay below the line y=7/3x and also do not contain a proper subpath of small size; e.g., ENNENENNNENNENNNENNN is a factor-free Dyck word but ENNENNENNEENNNNNENNN contains the factor ENNEENNNNN.
A322631
a(n) = 2*binomial(7*n-1,2*n)/(7*n-1).
Original entry on oeis.org
5, 110, 3876, 164450, 7713420, 385300240, 20096692635, 1081790956890, 59647783837425, 3351648108957720, 191230475831922200, 11049110585626417200, 645189590847792998601, 38014810319396501088720, 2257261555792984515847380, 134939208350635886836436490
Offset: 1
A[i,0] = B[i,0] = 1.
A[i,j] = if 5*j < 2*i + 2 then A[i-1,j] + A[i,j-1] , else 0.
\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
j --------------------------------------------------------
0| 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1| 0 1 2 3 4 5 6 7 8 9 10 11 12 13
2| 0 0 0 0 4 9 15 22 30 39 49 60 72 85
3| 0 0 0 0 0 0 15 37 67 106 155 215 287 372
4| 0 0 0 0 0 0 0 0 0 106 261 476 763 1135
5| 0 0 0 0 0 0 0 0 0 0 0 476 1239 2374
.
B[i,j] = if 5*j < 2*i + 1 then B[i-1,j] + B[i,j-1], else 0.
\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
j --------------------------------------------------------
0| 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1| 0 0 1 2 3 4 5 6 7 8 9 10 11 12
2| 0 0 0 0 3 7 12 18 25 33 42 52 63 75
3| 0 0 0 0 0 0 0 18 43 76 118 170 233 308
4| 0 0 0 0 0 0 0 0 0 76 194 364 597 905
5| 0 0 0 0 0 0 0 0 0 0 0 0 597 1502
.
A+B:
\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
j --------------------------------------------------------
0| 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1| 0 1 3 5 7 9 11 13 15 17 19 21 23 25
2| 0 0 0 0 7 16 27 40 55 72 91 112 135 160
3| 0 0 0 0 0 0 15 55 110 182 273 385 520 680
4| 0 0 0 0 0 0 0 0 0 182 455 840 1360 2040
5| 0 0 0 0 0 0 0 0 0 0 0 476 1836 3876
.
t = 1: a(1) = 5 because
A[5*1-1,2*1-1] = A[4,1] = 3, B[4,1] = 2, A[4,1]+B[4,1] = 5;
t = 2: a(2) = 110 because
A[5*2-1,2*2-1] = A[9,3] = 67, B[9,3] = 43, A[9,3]+B[9,3] = 110;
t = 3: a(3) = 3876 because
A[5*3-1,2*3-1] = A[14,5] = 2374, B[14,5] = 1502, A[14,5]+B[14,5] = 3876.
- Robert Israel, Table of n, a(n) for n = 1..552
- Cyril Banderier, Michael Wallner, Lattice paths of slope 2/5, arXiv:1605.02967 [cs.DM], 10 May 2016.
- D. E. Knuth, Problems That Philippe Would Have Loved, Paris 2014.
- Tomoki Nakamigawa, Norihide Tokushige, Counting Lattice Paths via a New Cycle Lemma, SIAM J. Discrete Math., 26(2):745-754, 2012.
-
a:=n->2*binomial(7*n-1,2*n)/(7*n-1): seq(a(n),n=1..20); # Muniru A Asiru, Dec 21 2018
-
for(t=1,16,print1(binomial(7*t-1,2*t)*(2/(7*t-1)),", "))
A274258
Number of factor-free Dyck words with slope 5/3 and length 8n.
Original entry on oeis.org
1, 7, 133, 4140, 154938, 6398717, 281086555, 12882897819, 609038885805, 29481041746958, 1453894927584477, 72789271870852237, 3689808842747726368, 189006099916444293090, 9768094831949586349262, 508712466332195692590121, 26670630123516854616641671, 1406503552584980596900001922, 74559627811441047591493767590
Offset: 0
a(2) = 133 since there are 133 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,10) that stay below the line y=5/3x and also do not contain a proper subpath of small size; e.g., ENEEEENNNNENNNNN is a factor-free Dyck word but ENEENNENNNEENNNN contains the factor EENNENNN.
Showing 1-9 of 9 results.
Comments