A284308
Number A(n,k) of singular vector tuples for a general k-dimensional {n}^k tensor; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 37, 4, 1, 1, 120, 997, 240, 5, 1, 1, 720, 44121, 51264, 1621, 6, 1, 1, 5040, 2882071, 23096640, 2940841, 11256, 7, 1, 1, 40320, 260415373, 18754813440, 14346274601, 180296088, 79717, 8, 1, 1, 362880, 31088448777, 24874143759360, 153480509680141, 9859397817600, 11559133741, 572928, 9, 1
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 6, 24, 120, 720, ...
1, 3, 37, 997, 44121, 2882071, ...
1, 4, 240, 51264, 23096640, 18754813440, ...
1, 5, 1621, 2940841, 14346274601, 153480509680141, ...
1, 6, 11256, 180296088, 9859397817600, 1435747717722810960, ...
- Alois P. Heinz, Antidiagonals n = 1..18, flattened
- Shalosh B. Ekhad and Doron Zeilberger, On the Number of Singular Vector Tuples of Hyper-Cubical Tensors, 2016; also arXiv preprint arXiv:1605.00172, 2016.
- Shmuel Friedland and Giorgio Ottaviani, The number of singular vector tuples and uniqueness of best rank-one approximation of tensors, Found. Comput. Math. 14 (2014), no. 6, 1209-1242.
- Bernd Sturmfels, Tensors and Their Eigenvalues, Notices AMS, 63 (No. 6, 2016), 606-606.
A271905
Number of singular vector tuples for a general n X n X n tensor.
Original entry on oeis.org
1, 6, 37, 240, 1621, 11256, 79717, 572928, 4164841, 30553116, 225817021, 1679454816, 12556853401, 94313192616, 711189994357, 5381592930816, 40848410792017, 310909645663332, 2372280474687277, 18141232682656320, 139010366280363601, 1067160872528170536, 8206301850166625797, 63203453697218605440
Offset: 1
- Bernd Sturmfels, Eigenvectors of Tensors, Colloquium Talk, Rutgers University, Apr 22 2016.
- Alois P. Heinz, Table of n, a(n) for n = 1..1111
- Shalosh B. Ekhad and Doron Zeilberger, On the Number of Singular Vector Tuples of Hyper-Cubical Tensors, 2016.
- Shalosh B. Ekhad and Doron Zeilberger, On the number of Singular Vector Tuples of Hyper-Cubical Tensors, arXiv preprint arXiv:1605.00172 [math.CO], 2016.
- Shmuel Friedland and Giorgio Ottaviani, The number of singular vector tuples and uniqueness of best rank-one approximation of tensors, Found. Comput. Math. 14 (2014), no. 6, 1209-1242.
See
A272551 for the n X n X n X n version.
-
a[1] = 1;
a[n_] := Module[{a, b, c, s}, s = Series[(((a + b)^n - c^n)((a + c)^n - b^n)((b + c)^n - a^n))/((a + b - c)(a + c - b)(b + c - a)), {a, 0, n}, {b, 0, n}, {c, 0, n}] // Normal // Expand; Cases[List @@ s, k_Integer a^(n-1) b^(n-1) c^(n-1)] /. (a|b|c) -> 1 // First];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 24}] (* Jean-François Alcover, Aug 18 2018 *)
A321711
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 0, 3, 0, 0, 11, 9, 0, 1, 53, 120, 60, 40, 9, 309, 1410, 1800, 1590, 885, 216, 2119, 16560, 39960, 55120, 52065, 29016, 7570, 16687, 202755, 801780, 1696555, 2433165, 2300403, 1326850, 357435, 148329, 2624496, 15606360, 48387024, 99650670, 141429456, 135382464, 79738800, 22040361, 1468457, 36080100, 304274880, 1323453180, 3760709526, 7493549868, 10570597800, 10199809980, 6103007505, 1721632024
Offset: 0
For n=3 we have s1 = z1 + z2 + z3, s2 = z1^2 + z2^2 + z3^2, s12 = z1*z2 + z1*z3 + z2*z3, f1 = z1^2 + z2^2 + z3^2 + t*z2*z3 + z1*(z2 + z3), f2 = z1^2 + z2^2 + z3^2 + t*z1*z3 + z2*(z1 + z3), f3 = z1^2 + z2^2 + z3^2 + t*z1*z2 + z3*(z1 + z2), [(z1*z2*z3)^2] f1*f2*f3 = 11 + 9*t + t^3, therefore P_3(t) = 11 + 9*t + t^3.
A(x;t) = 1 + x + 3*x^2 + (11 + 9*t + t^3)*x^3 + (53 + 120*t + 60*t^2 + 40*t^3 + 9*t^4)*x^4 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7]
[0] 1;
[1] 1; 0;
[2] 3; 0; 0;
[3] 11, 9, 0, 1;
[4] 53, 120, 60, 40, 9;
[5] 309, 1410, 1800, 1590, 885, 216;
[6] 2119, 16560, 39960, 55120, 52065, 29016, 7570;
[7] 16687, 202755, 801780, 1696555, 2433165, 2300403, 1326850, 357435;
[8] ...
-
P(n, t='t) = {
my(z=vector(n, k, eval(Str("z", k))),
s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2,
f=vector(n, k, s2 + t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1);
for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0)));
for (k=1, n, g=polcoef(g, 2, z[k]));
g;
};
seq(N) = concat([[1], [1, 0], [3, 0, 0]], apply(n->Vecrev(P(n,'t)), [3..N]));
concat(seq(9))
Showing 1-3 of 3 results.