A274323 Number of partitions of n^4 into at most two parts.
1, 1, 9, 41, 129, 313, 649, 1201, 2049, 3281, 5001, 7321, 10369, 14281, 19209, 25313, 32769, 41761, 52489, 65161, 80001, 97241, 117129, 139921, 165889, 195313, 228489, 265721, 307329, 353641, 405001, 461761, 524289, 592961, 668169, 750313, 839809, 937081
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).
Programs
-
PARI
a(n) = (3+(-1)^n+2*n^4)/4
-
PARI
b(n) = (3+(-1)^n+2*n)/4 \\ the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)) vector(50, n, n--; b(n^4))
Formula
G.f.: (1 - 3*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5) / ((1-x)^5*(1+x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n > 5.
a(n) = (3 + (-1)^n + 2*n^4)/4.
a(n) = A008619(n^4).
a(n) = 1 + floor(n^4/2). - Alois P. Heinz, Oct 13 2016
E.g.f.: ((2 + x + 7*x^2 + 6*x^3 + x^4)*cosh(x) + (1 + x + 7*x^2 + 6*x^3 + x^4)*sinh(x))/2. - Stefano Spezia, Mar 17 2024
Comments