cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274323 Number of partitions of n^4 into at most two parts.

Original entry on oeis.org

1, 1, 9, 41, 129, 313, 649, 1201, 2049, 3281, 5001, 7321, 10369, 14281, 19209, 25313, 32769, 41761, 52489, 65161, 80001, 97241, 117129, 139921, 165889, 195313, 228489, 265721, 307329, 353641, 405001, 461761, 524289, 592961, 668169, 750313, 839809, 937081
Offset: 0

Views

Author

Colin Barker, Oct 13 2016

Keywords

Comments

Coefficient of x^(n^4) in 1/((1-x)*(1-x^2)).

Crossrefs

Cf. A099392 (n^2), A274324 (n^3), A274325 (n^5).
Cf. A008619.

Programs

  • PARI
    a(n) = (3+(-1)^n+2*n^4)/4
    
  • PARI
    b(n) = (3+(-1)^n+2*n)/4 \\ the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2))
    vector(50, n, n--; b(n^4))

Formula

G.f.: (1 - 3*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5) / ((1-x)^5*(1+x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n > 5.
a(n) = (3 + (-1)^n + 2*n^4)/4.
a(n) = A008619(n^4).
a(n) = 1 + floor(n^4/2). - Alois P. Heinz, Oct 13 2016
E.g.f.: ((2 + x + 7*x^2 + 6*x^3 + x^4)*cosh(x) + (1 + x + 7*x^2 + 6*x^3 + x^4)*sinh(x))/2. - Stefano Spezia, Mar 17 2024