cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274325 Number of partitions of n^5 into at most two parts.

Original entry on oeis.org

1, 1, 17, 122, 513, 1563, 3889, 8404, 16385, 29525, 50001, 80526, 124417, 185647, 268913, 379688, 524289, 709929, 944785, 1238050, 1600001, 2042051, 2576817, 3218172, 3981313, 4882813, 5940689, 7174454, 8605185, 10255575, 12150001, 14314576, 16777217
Offset: 0

Views

Author

Colin Barker, Jun 18 2016

Keywords

Crossrefs

A subsequence of A008619.
Cf. A099392 (n^2), A274324 (n^3).

Programs

  • Magma
    [(3+(-1)^n+2*n^5)/4 : n in [0..50]]; // Wesley Ivan Hurt, Jun 25 2016
  • Maple
    A274325:=n->(3+(-1)^n+2*n^5)/4: seq(A274325(n), n=0..50); # Wesley Ivan Hurt, Jun 25 2016
  • Mathematica
    Table[(3+(-1)^n+2*n^5)/4, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 25 2016 *)
  • PARI
    \\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)).
    b(n) = (3+(-1)^n+2*n)/4
    vector(50, n, n--; b(n^5))
    

Formula

Coefficient of x^(n^5) in 1/((1-x)*(1-x^2)).
a(n) = A008619(n^5).
a(n) = (3 + (-1)^n + 2*n^5)/4.
a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7) for n > 6.
G.f.: (1 - 4*x + 21*x^2 + 41*x^3 + 46*x^4 + 15*x^5) / ((1-x)^6*(1+x)).
E.g.f.: ((2 + x + 15*x^2 + 25*x^3 + 10*x^4 + x^5)*cosh(x) + (1 + x + 15*x^2 + 25*x^3 + 10*x^4 + x^5)*sinh(x))/2. - Stefano Spezia, Mar 17 2024