A274325 Number of partitions of n^5 into at most two parts.
1, 1, 17, 122, 513, 1563, 3889, 8404, 16385, 29525, 50001, 80526, 124417, 185647, 268913, 379688, 524289, 709929, 944785, 1238050, 1600001, 2042051, 2576817, 3218172, 3981313, 4882813, 5940689, 7174454, 8605185, 10255575, 12150001, 14314576, 16777217
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-9,5,5,-9,5,-1).
Programs
-
Magma
[(3+(-1)^n+2*n^5)/4 : n in [0..50]]; // Wesley Ivan Hurt, Jun 25 2016
-
Maple
A274325:=n->(3+(-1)^n+2*n^5)/4: seq(A274325(n), n=0..50); # Wesley Ivan Hurt, Jun 25 2016
-
Mathematica
Table[(3+(-1)^n+2*n^5)/4, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 25 2016 *)
-
PARI
\\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)). b(n) = (3+(-1)^n+2*n)/4 vector(50, n, n--; b(n^5))
Formula
Coefficient of x^(n^5) in 1/((1-x)*(1-x^2)).
a(n) = A008619(n^5).
a(n) = (3 + (-1)^n + 2*n^5)/4.
a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7) for n > 6.
G.f.: (1 - 4*x + 21*x^2 + 41*x^3 + 46*x^4 + 15*x^5) / ((1-x)^6*(1+x)).
E.g.f.: ((2 + x + 15*x^2 + 25*x^3 + 10*x^4 + x^5)*cosh(x) + (1 + x + 15*x^2 + 25*x^3 + 10*x^4 + x^5)*sinh(x))/2. - Stefano Spezia, Mar 17 2024