cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A274324 Number of partitions of n^3 into at most two parts.

Original entry on oeis.org

1, 1, 5, 14, 33, 63, 109, 172, 257, 365, 501, 666, 865, 1099, 1373, 1688, 2049, 2457, 2917, 3430, 4001, 4631, 5325, 6084, 6913, 7813, 8789, 9842, 10977, 12195, 13501, 14896, 16385, 17969, 19653, 21438, 23329, 25327, 27437, 29660, 32001, 34461, 37045, 39754
Offset: 0

Views

Author

Colin Barker, Jun 18 2016

Keywords

Crossrefs

A subsequence of A008619.
Cf. A099392 (n^2), A274325 (n^5).
Cf. also A050492.

Programs

  • Magma
    [(3+(-1)^n+2*n^3)/4 : n in [0..50]]; // Wesley Ivan Hurt, Jun 25 2016
  • Maple
    A274324:=n->(3+(-1)^n+2*n^3)/4: seq(A274324(n), n=0..50); # Wesley Ivan Hurt, Jun 25 2016
  • Mathematica
    Table[(3+(-1)^n+2*n^3)/4, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 25 2016 *)
  • PARI
    \\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)).
    b(n) = (3+(-1)^n+2*n)/4
    vector(50, n, n--; b(n^3))
    

Formula

Coefficient of x^(n^3) in 1/((1-x)*(1-x^2)).
a(n) = A008619(n^3).
a(n) = (3+(-1)^n+2*n^3)/4.
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5) for n>4.
G.f.: (1-2*x+4*x^2+3*x^3) / ((1-x)^4*(1+x)).
From Stefano Spezia, Sep 28 2022: (Start)
a(n) = A050492((n+1)/2) for n odd.
E.g.f.: ((2 + x + 3*x^2 + x^3)*cosh(x) + (1 + x + 3*x^2 + x^3)*sinh(x))/2. (End)

A274323 Number of partitions of n^4 into at most two parts.

Original entry on oeis.org

1, 1, 9, 41, 129, 313, 649, 1201, 2049, 3281, 5001, 7321, 10369, 14281, 19209, 25313, 32769, 41761, 52489, 65161, 80001, 97241, 117129, 139921, 165889, 195313, 228489, 265721, 307329, 353641, 405001, 461761, 524289, 592961, 668169, 750313, 839809, 937081
Offset: 0

Views

Author

Colin Barker, Oct 13 2016

Keywords

Comments

Coefficient of x^(n^4) in 1/((1-x)*(1-x^2)).

Crossrefs

Cf. A099392 (n^2), A274324 (n^3), A274325 (n^5).
Cf. A008619.

Programs

  • PARI
    a(n) = (3+(-1)^n+2*n^4)/4
    
  • PARI
    b(n) = (3+(-1)^n+2*n)/4 \\ the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2))
    vector(50, n, n--; b(n^4))

Formula

G.f.: (1 - 3*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5) / ((1-x)^5*(1+x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n > 5.
a(n) = (3 + (-1)^n + 2*n^4)/4.
a(n) = A008619(n^4).
a(n) = 1 + floor(n^4/2). - Alois P. Heinz, Oct 13 2016
E.g.f.: ((2 + x + 7*x^2 + 6*x^3 + x^4)*cosh(x) + (1 + x + 7*x^2 + 6*x^3 + x^4)*sinh(x))/2. - Stefano Spezia, Mar 17 2024
Showing 1-2 of 2 results.