A274382 a(n) = gcd(n, n*(n+1)/2 - sigma(n)).
1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 6, 1, 4, 1, 1, 1, 24, 1, 1, 1, 14, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 10, 1, 3, 1, 2, 3, 1, 1, 4, 1, 2, 3, 4, 1, 3, 1, 4, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 4, 3, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 14, 1, 1
Offset: 1
Examples
a(6) = 3 because 6*7/2 - sigma(6) = 21 - 12 = 9 and gcd(6,9) = 3.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[GCD(n, n*(n+1) div 2-SumOfDivisors(n)): n in [1..100]]; // Vincenzo Librandi, Jun 25 2016
-
Maple
with(numtheory); P:=proc(q) local n; for n from 1 to q do print(gcd(n,n*(n+1)/2-sigma(n))); od; end: P(10^3);
-
Mathematica
Table[GCD[n, n (n+1)/2 - DivisorSigma[1, n]], {n, 100}] (* Vincenzo Librandi, Jun 25 2016 *)
-
PARI
a(n) = gcd(n, n*(n+1)/2-sigma(n)) \\ Felix Fröhlich, Jun 23 2016
Formula
a(n) = gcd(n, antisigma(n)) = gcd(n, A024816(n)). - Omar E. Pol, Jun 29 2016