cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274405 Number of anti-down steps in all modified skew Dyck paths of semilength n.

Original entry on oeis.org

0, 0, 0, 1, 6, 34, 179, 915, 4607, 22988, 114090, 564359, 2785921, 13735074, 67665208, 333211828, 1640575047, 8077199130, 39770520844, 195852723348, 964689515033, 4752800817185, 23422061819883, 115456855588378, 569293729146929, 2807864888917275
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t, n) option remember; `if`(y>n, 0, `if`(n=y,
          `if`(t=2, 0, [1, 0]), b(x+1, y+1, 0, n-1)+`if`(t<>1
           and x>0, (p-> p+[0, p[1]])(b(x-1, y+1, 2, n-1)), 0)+
          `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0)))
        end:
    a:= n-> b(0$3, 2*n)[2]:
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_, n_] := b[x, y, t, n] = If[y > n, 0, If[n == y, If[t == 2, {0, 0}, {1, 0}], b[x + 1, y + 1, 0, n - 1] + If[t != 1 && x > 0, Function[p, p + {0, p[[1]]}][b[x - 1, y + 1, 2, n - 1]], 0] + If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]];
    a[n_] := b[0, 0, 0, 2 n][[2]];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k>0} k * A274404(n,k).
a(n) ~ c * 5^n / sqrt(n), where c = 0.0554525135364274199547478570703521322323... . - Vaclav Kotesovec, Jun 26 2016