cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274459 Least number of perfect powers that add up to n.

Original entry on oeis.org

1, 2, 3, 1, 2, 3, 4, 1, 1, 2, 3, 2, 2, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 1, 2, 1, 2, 2, 3, 2, 1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 1, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 1, 2, 3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 3, 2, 1, 2, 3, 3, 2
Offset: 1

Views

Author

Sergio Pimentel, Jun 23 2016

Keywords

Comments

Least number of perfect powers (A001597) needed to add up to n.
This sequence is close to but not exactly equal to A063274.
a(n) is at most 4 since any number can be written as a sum of 4 squares (Lagrange's theorem), but it is possible that for a sufficiently large n, a(n) < 4.
a(n) <= a(i) + a(n-i) for 1 <= i <= n-1. (for computational ease, the maximum value for i can be chosen as floor(n/2)). a(1991) = 4. for 1992 <= k <= 20000, there is no k such that a(k) = 4. - David A. Corneth, Jun 24 2016 [Next such k is 25887, see A113505. - Vaclav Kotesovec, Jun 25 2016]

Examples

			a(31) = 2 since 31 can be written as the sum of two (31 = 3^3 + 2^2 = 27 + 4) but no fewer than two perfect powers.
		

Crossrefs

Cf. A063275 (indices for which a(n)=3), A113505 (indices for which a(n)=4).

Programs

  • Mathematica
    nn = 72; t = Select[Range@ nn, # == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1 &]; Table[Min@ Map[Length, Select[IntegerPartitions@ n, AllTrue[#, MemberQ[t, #] &] &]], {n, nn}] (* Michael De Vlieger, Jun 23 2016, after Ant King at A001597 *)
  • PARI
    lista(n) = {my(v = vector(n)); for(i = 2,sqrtint(n), for(j = 2, logint(n, i), v[i^j] = 1)); v[1]=1; v[2]=2; for(i=3, #v, if(v[i]==0, v[i] = vecmin(vector( i\2, k,v[k] + v[i-k]))));v} \\ David A. Corneth, Jun 24 2016; corrected by Peter Schorn, Jun 09 2022

Extensions

More terms from Michael De Vlieger, Jun 23 2016
Terms from a(74) from David A. Corneth, Jun 24 2016