A274496 Triangle read by rows: T(n,k) is the number of binary words of length n having degree of asymmetry equal to k (n >= 0; 0 <= k <= n/2).
1, 2, 2, 2, 4, 4, 4, 8, 4, 8, 16, 8, 8, 24, 24, 8, 16, 48, 48, 16, 16, 64, 96, 64, 16, 32, 128, 192, 128, 32, 32, 160, 320, 320, 160, 32, 64, 320, 640, 640, 320, 64, 64, 384, 960, 1280, 960, 384, 64, 128, 768, 1920, 2560, 1920, 768, 128
Offset: 0
Examples
From _Andrew Howroyd_, Jan 10 2018: (Start) Triangle begins: 1; 2; 2, 2; 4, 4; 4, 8, 4; 8, 16, 8; 8, 24, 24, 8; 16, 48, 48, 16; 16, 64, 96, 64, 16; 32, 128, 192, 128, 32; 32, 160, 320, 320, 160, 32; ... (End) T(4,0) = 4 because we have 0000, 0110, 1001, and 1111. T(4,1) = 8 because we have 0001, 0010, 0100, 1000, 0111, 1011, 1101, and 1110. T(4,2) = 4 because we have 0011, 0101, 1010, and 1100.
Programs
-
Maple
T := proc(n, k) options operator, arrow: 2^ceil((1/2)*n)*binomial(floor((1/2)*n), k) end proc: for n from 0 to 15 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
-
Mathematica
Table[2^Ceiling[n/2] Binomial[Floor[n/2], k], {n, 0, 13}, {k, 0, n/2}] // Flatten (* Michael De Vlieger, Jan 11 2018 *)
-
PARI
T(n,k) = 2^ceil(n/2)*binomial(floor(n/2), k); for(n=0, 10, for(k=0, n\2, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Jan 10 2018
Formula
T(n,k) = 2^ceiling(n/2)*binomial(floor(n/2),k).
G.f.: G(t,z) = (1 + 2z)/(1 - 2(1 + t)z^2).
The row generating polynomials P[n] satisfy P[n] = 2(1 + t)P[n-2] (n >= 2). Easy to see if we note that the binary words of length n (n >= 2) are 0w0, 0w1, 1w0, and 1w1, where w is a binary word of length n-2.
Comments