A274497
Sum of the degrees of asymmetry of all binary words of length n.
Original entry on oeis.org
0, 0, 2, 4, 16, 32, 96, 192, 512, 1024, 2560, 5120, 12288, 24576, 57344, 114688, 262144, 524288, 1179648, 2359296, 5242880, 10485760, 23068672, 46137344, 100663296, 201326592, 436207616, 872415232, 1879048192, 3758096384, 8053063680
Offset: 0
a(3) = 4 because the binary words 000, 001, 010, 100, 011, 101, 110, 111 have degrees of asymmetry 0, 1, 0, 1, 1, 0, 1, 0, respectively.
-
a:= proc(n) options operator, arrow: (1/8)*(2*n-1+(-1)^n)*2^n end proc: seq(a(n), n = 0 .. 30);
-
LinearRecurrence[{2, 4, -8}, {0, 0, 2}, 31] (* Jean-François Alcover, Nov 16 2022 *)
-
a(n)=(2*n-1+(-1)^n)*2^n/8 \\ Charles R Greathouse IV, Jul 08 2024
A274498
Triangle read by rows: T(n,k) is the number of ternary words of length n having degree of asymmetry equal to k (n>=0; 0<=k<=n/2).
Original entry on oeis.org
1, 3, 3, 6, 9, 18, 9, 36, 36, 27, 108, 108, 27, 162, 324, 216, 81, 486, 972, 648, 81, 648, 1944, 2592, 1296, 243, 1944, 5832, 7776, 3888, 243, 2430, 9720, 19440, 19440, 7776, 729, 7290, 29160, 58320, 58320, 23328, 729, 8748, 43740, 116640, 174960, 139968, 46656
Offset: 0
From _Andrew Howroyd_, Jan 10 2018: (Start)
Triangle begins:
1;
3;
3, 6;
9, 18;
9, 36, 36;
27, 108, 108;
27, 162, 324, 216;
81, 486, 972, 648;
81, 648, 1944, 2592, 1296;
...
(End)
T(2,0) = 3 because we have 00, 11, and 22.
T(2,1) = 6 because we have 01, 02, 10, 12, 20, and 21.
-
T := proc(n,k) options operator, arrow: 2^k*3^ceil((1/2)*n)*binomial(floor((1/2)*n), k) end proc: for n from 0 to 15 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
-
T[n_, k_] := 2^k 3^Ceiling[n/2] Binomial[Floor[n/2], k];
Table[T[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Jan 04 2021 *)
-
T(n,k) = 2^k*3^ceil(n/2)*binomial(floor(n/2),k);
for(n=0, 10, for(k=0, n\2, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Jan 10 2018
A274499
Sum of the degrees of asymmetry of all ternary words of length n.
Original entry on oeis.org
0, 0, 6, 18, 108, 324, 1458, 4374, 17496, 52488, 196830, 590490, 2125764, 6377292, 22320522, 66961566, 229582512, 688747536, 2324522934, 6973568802, 23245229340, 69735688020, 230127770466, 690383311398, 2259436291848, 6778308875544, 22029503845518, 66088511536554
Offset: 0
a(2) = 6 because the ternary words 00, 01, 02, 10, 11, 12, 20, 21, 22 have degrees of asymmetry 0, 1, 1, 1, 0, 1, 1, 1, 0, respectively.
-
a := proc (n) options operator, arrow: (1/6)*(2*n-1+(-1)^n)*3^n end proc: seq(a(n), n = 0 .. 30);
-
LinearRecurrence[{3, 9, -27}, {0, 0, 6}, 28] (* Jean-François Alcover, Sep 09 2024 *)
Showing 1-3 of 3 results.
Comments