cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274517 Number T(n,k) of integer partitions of n with exactly k distinct primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 2, 4, 1, 3, 7, 1, 3, 9, 3, 5, 12, 5, 6, 15, 9, 8, 22, 11, 1, 8, 28, 19, 1, 12, 38, 24, 3, 13, 46, 38, 4, 17, 62, 48, 8, 19, 77, 68, 12, 26, 98, 87, 20, 28, 117, 127, 24, 1, 37, 152, 154, 41, 1, 40, 183, 210, 55, 2, 52, 230, 260, 82, 3
Offset: 0

Views

Author

Geoffrey Critzer, Jun 25 2016

Keywords

Comments

Row lengths increase by 1 at row A007504(n).
Columns k=0-1 give: A002095, A132381.
Row sums give: A000041.

Examples

			T(6,1) = 7 because we have: 5+1, 4+2, 3+3, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1+1.
Triangle T(n,k) begins:
  1;
  1;
  1,  1;
  1,  2;
  2,  3;
  2,  4,  1;
  3,  7,  1;
  3,  9,  3;
  5, 12,  5;
  6, 15,  9;
  8, 22, 11, 1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
          `if`(j>0 and isprime(i), x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..30);  # Alois P. Heinz, Jun 26 2016
  • Mathematica
    nn = 20; Map[Select[#, # > 0 &] &, CoefficientList[Series[Product[
          1/(1 - z^k), {k,Select[Range[1000], PrimeQ[#] == False &]}] Product[
          u/(1 - z^j) - u + 1, {j, Table[Prime[n], {n, 1, nn}]}], {z, 0,
         nn}], {z, u}]] // Grid

Formula

G.f.: Product_{k>=1} (1 - x^prime(k))/(1 - x^k)*(y/(1-x^prime(k)) - y + 1).