A274517 Number T(n,k) of integer partitions of n with exactly k distinct primes.
1, 1, 1, 1, 1, 2, 2, 3, 2, 4, 1, 3, 7, 1, 3, 9, 3, 5, 12, 5, 6, 15, 9, 8, 22, 11, 1, 8, 28, 19, 1, 12, 38, 24, 3, 13, 46, 38, 4, 17, 62, 48, 8, 19, 77, 68, 12, 26, 98, 87, 20, 28, 117, 127, 24, 1, 37, 152, 154, 41, 1, 40, 183, 210, 55, 2, 52, 230, 260, 82, 3
Offset: 0
Examples
T(6,1) = 7 because we have: 5+1, 4+2, 3+3, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1+1. Triangle T(n,k) begins: 1; 1; 1, 1; 1, 2; 2, 3; 2, 4, 1; 3, 7, 1; 3, 9, 3; 5, 12, 5; 6, 15, 9; 8, 22, 11, 1; ...
Links
- Alois P. Heinz, Rows n = 0..1000, flattened
Programs
-
Maple
b:= proc(n, i) option remember; expand( `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)* `if`(j>0 and isprime(i), x, 1), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..30); # Alois P. Heinz, Jun 26 2016
-
Mathematica
nn = 20; Map[Select[#, # > 0 &] &, CoefficientList[Series[Product[ 1/(1 - z^k), {k,Select[Range[1000], PrimeQ[#] == False &]}] Product[ u/(1 - z^j) - u + 1, {j, Table[Prime[n], {n, 1, nn}]}], {z, 0, nn}], {z, u}]] // Grid
Formula
G.f.: Product_{k>=1} (1 - x^prime(k))/(1 - x^k)*(y/(1-x^prime(k)) - y + 1).
Comments