cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A299156 Numbers k such that k*(k+1) divides tribonacci(k) (A000073(k)).

Original entry on oeis.org

1, 256, 397, 1197, 8053, 8736, 9901, 32173, 33493, 33757, 38461, 48757, 56101, 57073, 64153, 76561, 79693, 87517, 100608, 102217, 105253, 105601, 105913, 105997, 107713, 108553, 110976, 116293, 123121, 131437, 138517, 143137, 147541, 151237, 156601, 171253
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Comments

A subsequence of A232570.

Examples

			tribonacci(256) = 10285895715599251294835119279496333059462348558276025598603904254464 = 256 * 257 * 156339611436029476149609668037091638184921397104146789862048642.
		

Crossrefs

Programs

  • Maple
    with(LinearAlgebra[Modular]):
    T:= (n, m)-> MatrixPower(m, Mod(m, <<0|1|0>,
        <0|0|1>, <1|1|1>>, float[8]), n)[1, 3]:
    a:= proc(n) option remember; local i, k, ok;
          if n=1 then 1 else
            for k from 1+a(n-1) do ok:= true;
              for i in ifactors(k*(k+1))[2] while ok do
                ok:= is(T(k, i[1]^i[2])=0)
              od; if ok then break fi
            od; k
          fi
        end:
    seq(a(n), n=1..10);  # Alois P. Heinz, Feb 06 2018
  • Mathematica
    a = b = 0; c = d = 1; k = 2; lst = {1}; While[k < 171255, If[ Mod[c, k (k + 1)] == 0, AppendTo[lst, k]]; a = b; b = c; c = d; d = a + b + c; k++] (* Robert G. Wilson v, Feb 07 2018 *)
Showing 1-1 of 1 results.