A274525 Prime numbers p such that p - 2, p^2 - p - 1, p^2 - p + 1 are prime numbers.
7, 139, 1789, 2731, 4159, 5641, 13339, 13399, 19429, 21739, 22369, 32059, 32911, 33601, 42571, 45319, 54541, 55339, 65449, 68821, 106189, 108499, 111871, 132859, 136399, 138079, 141511, 142981, 148201, 149629, 152041, 152839, 173431, 174049, 178249
Offset: 1
Keywords
Examples
5 - 2 = 3 prime, 5 prime, 5*(5-1) - 1 = 19 prime, 5*(5-1) + 1 = 21 composite, so 5 is not in the sequence. 7 - 2 = 5 prime, 7 prime, 7*(7-1) - 1 = 41 prime, 7*(7-1) + 1 = 43 prime so 7 is in the sequence.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..30000
Crossrefs
Cf. A228968.
Programs
-
Mathematica
Select[Prime[Range[100]], Union[PrimeQ[{# - 2, #^2 - # - 1, #^2 - # + 1}]] == {True} &] (* Alonso del Arte, Jun 27 2016 *) Select[Prime[Range[17000]],AllTrue[{#-2,#^2-#-1,#^2-#+1},PrimeQ]&] (* Harvey P. Dale, Jun 20 2024 *)
-
PARI
lista(nn) = forprime(p=2, nn, if (isprime(p-2) && isprime(p^2-p-1) && isprime(p^2-p+1), print1(p, ", "))); \\ Michel Marcus, Jul 07 2016
-
Python
from sympy import isprime, primerange def aupto(n): t = [] for p in primerange(2, n+1): if isprime(p-2) and isprime(p**2 - p - 1) and isprime(p**2 - p + 1): t.append(p) return t # Paul Muljadi, Jun 21 2024