A274677 Numbers k such that 7*10^k + 19 is prime.
1, 2, 3, 4, 27, 32, 63, 69, 107, 145, 154, 173, 190, 271, 412, 1219, 1509, 2392, 4444, 5567, 7424, 32174, 51573
Offset: 1
Examples
3 is in this sequence because 7*10^3 + 19 = 7019 is prime. 5 is not in the sequence because 7*10^5 + 19 = 79*8861. Initial terms and associated primes: a(1) = 1: 89; a(2) = 2: 719; a(3) = 3: 7019; a(4) = 4: 70019, etc.
Links
- Makoto Kamada, Search for 70w19.
Programs
-
Magma
[n: n in [1..800] | IsPrime(7*10^n+19)];
-
Mathematica
Select[Range[0, 3000], PrimeQ[7 10^# + 19] &]
-
PARI
lista(nn) = for(n=1, nn, if(ispseudoprime(7*10^n+19), print1(n, ", "))); \\ Altug Alkan, Jul 05 2016
-
Python
from sympy import isprime def afind(limit, startk=0): sevenpow10 = 7*10**startk for k in range(startk, limit+1): if isprime(sevenpow10 + 19): print(k, end=", ") k += 1 sevenpow10 *= 10 afind(500) # Michael S. Branicky, Dec 31 2021
Extensions
a(20)-a(21) from Michael S. Branicky, Dec 31 2021
a(22)-a(23) from Kamada data by Tyler Busby, Apr 14 2024
Comments