A274678 Numbers k such that 7*10^k + 27 is prime.
1, 2, 3, 5, 7, 34, 38, 49, 51, 89, 91, 132, 227, 3662, 5019, 9729, 25437, 99944, 106553, 114577
Offset: 1
Examples
3 is in this sequence because 7*10^3 + 27 = 7027 is prime. 4 is not in the sequence because 7*10^4 + 27 = 70027 = 239 * 293. Initial terms and associated primes: a(1) = 1: 97; a(2) = 2: 727; a(3) = 3: 7027; a(4) = 5: 700027, etc.
Links
- Makoto Kamada, Search for 70w27.
Crossrefs
Cf. similar sequences listed in A274676.
Programs
-
Magma
[n: n in [1..800] | IsPrime(7*10^n+27)];
-
Mathematica
Select[Range[0, 3000], PrimeQ[7 10^# + 27] &]
-
PARI
lista(nn) = for(n=1, nn, if(ispseudoprime(7*10^n+27), print1(n, ", "))); \\ Altug Alkan, Jul 05 2016
-
Python
from sympy import isprime def afind(limit, startk=0): sevenpow10 = 7*10**startk for k in range(startk, limit+1): if isprime(sevenpow10 + 27): print(k, end=", ") k += 1 sevenpow10 *= 10 afind(500) # Michael S. Branicky, Dec 31 2021
Extensions
a(15)-a(16) from Michael S. Branicky, Dec 31 2021
a(17)-a(20) from Kamada data by Tyler Busby, Apr 14 2024