cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226750 Decimal expansion of the number x other than -3 defined by x*e^x = -3/e^3.

Original entry on oeis.org

1, 7, 8, 5, 6, 0, 6, 2, 7, 8, 7, 7, 9, 2, 1, 1, 0, 6, 5, 9, 6, 8, 0, 8, 6, 6, 9, 7, 0, 5, 5, 1, 4, 8, 0, 4, 6, 5, 4, 1, 1, 8, 2, 5, 5, 9, 2, 6, 8, 8, 5, 9, 0, 7, 7, 2, 0, 1, 4, 2, 3, 0, 6, 0, 5, 8, 7, 8, 5, 6, 9, 5, 4, 9, 4, 4, 8, 2, 6, 0, 8, 7, 5, 4, 3, 1, 3, 4, 3, 4, 6, 5, 2, 1, 6, 0, 3, 5, 5, 6, 1, 0, 4, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			-0.178560627877921106596808669705514804654118255926885907720142306058785...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[ProductLog[-3/e^3], 105]][[1]]
  • PARI
    solve(x=0,1,3/exp(3)-x*exp(-x)) \\ Charles R Greathouse IV, Nov 19 2013

Extensions

Term a(104) corrected by G. C. Greubel, Nov 16 2017

A274713 Number of partitions of a {3*n-1}-set into n nonempty subsets.

Original entry on oeis.org

1, 15, 966, 145750, 40075035, 17505749898, 11143554045652, 9741955019900400, 11201516780955125625, 16392038075086211019625, 29749840488672593296243236, 65580126734167548918100615020, 172597131674172062132363512309613, 534584200037719212882636004559739000, 1924887533450780657560944228447179522880, 7973126100358260458973226689851075932667520, 37645241791600906804871080818625037726247519045
Offset: 1

Views

Author

Paul D. Hanna, Jul 03 2016

Keywords

Comments

a(n) is divisible by the triangular numbers: a(n) / (n*(n+1)/2) = A274712(n).

Examples

			O.g.f.: A(x) = x + 15*x^2 + 966*x^3 + 145750*x^4 + 40075035*x^5 + 17505749898*x^6 + 11143554045652*x^7 + 9741955019900400*x^8 +...
where
A(x) = exp(-x)*x + 2^5*exp(-2^3*x)*x^2/2! + 3^8*exp(-3^3*x)*x^3/3! + 4^11*exp(-4^3*x)*x^4/4! + 5^14*exp(-5^3*x)*x^5/5! + 6^17*exp(-6^3*x)*x^6/6! + 7^20*exp(-7^3*x)*x^7/7! + 8^23*exp(-8^3*x)*x^8/8! +...+ n^(3*n-1)*exp(-n^3*x)*x^n/n! +...
simplifies to an integer series.
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[3*n - 1, n], {n, 1, 20}] (* Vaclav Kotesovec, Jul 06 2016 *)
  • PARI
    {a(n) = abs( stirling(3*n-1, n, 2) )}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = 1/n! * sum(k=0, n, (-1)^(n-k) * binomial(n, k) * k^(3*n-1))}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = polcoeff( 1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n-1)}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = polcoeff( sum(m=1, n, m^(3*m-1) * x^m * exp(-m^3*x +x*O(x^n))/m!), n)}
    for(n=1, 20, print1(a(n), ", "))

Formula

O.g.f.: Sum_{n>=1} n^(3*n-1) * exp(-n^3*x) * x^n / n!, an integer series.
a(n) = A008277(3*n-1,n) for n>=1, where A008277 are the Stirling numbers of the second kind.
a(n) = 1/n! * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^(3*n-1).
a(n) = [x^(2*n-1)] 1 / Product_{k=1..n} (1 - k*x).
a(n) ~ 3^(3*n-1) * n^(2*n-3/2) / (exp(2*n) * c^n * (3-c)^(2*n-1) * sqrt(2*Pi*(1-c))), where c = -LambertW(-3*exp(-3)) = 0.1785606278779211065968... = -A226750. - Vaclav Kotesovec, Jul 06 2016
Showing 1-2 of 2 results.