cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274755 Repunits with even indices multiplied by 99, i.e., 99*(11, 1111, 111111, 11111111, ...).

Original entry on oeis.org

1089, 109989, 10999989, 1099999989, 109999999989, 10999999999989, 1099999999999989, 109999999999999989, 10999999999999999989, 1099999999999999999989, 109999999999999999999989, 10999999999999999999999989, 1099999999999999999999999989
Offset: 1

Views

Author

Rodolfo A. Fiorini, Jul 04 2016

Keywords

Comments

The reciprocals of the terms give a sequence of even growing periods, starting from 22, with delta = 22 (i.e., 22,44,66,88,110,132,...).

Examples

			a(3) = 101*109989 - 100*1089 = 10999989.
		

Crossrefs

Programs

  • Magma
    [11*(10^(2*n) - 1): n in [1..20]];
    
  • Maple
    A274755:= n-> 11*(10^(2*n) - 1) : seq(A274755(n), n=1..20);
  • Mathematica
    Array[99(10^(2 #)- 1)/9&, 15]
    LinearRecurrence[{101, -100}, {1089, 109989}, 20] (* Vincenzo Librandi, Jul 07 2016 *)
  • PARI
    Vec(1089*x/((1-x)*(1-100*x)) + O(x^99)) \\ Altug Alkan, Jul 06 2016

Formula

a(n) = 101*a(n-1) - 100*a(n-2), with a(1)= 1089 and a(2)= 109989.
G.f.: 1089*x/((1 - x)*(1 - 100*x)). - Ilya Gutkovskiy, Jul 04 2016
a(n) = 99*A099814(n). - Michel Marcus, Jul 04 2016
a(n) = 11*(10^(2*n)-1). - Robert Israel, Jul 06 2016
E.g.f.: 11*exp(x)*(exp(99*x) - 1). - Elmo R. Oliveira, Jun 09 2025