cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A274834 7-white numbers: partition digits of n^7 into blocks of 7 starting at right; sum of these 7-digit numbers equals n.

Original entry on oeis.org

0, 1, 11111110, 13477450, 20483494, 22705717, 24588560, 25411435, 26522546, 27150160, 27150161, 27777775, 28261271, 28744768, 28888885, 28888886, 29372382, 29372383, 29516500, 29855879, 31111109, 31738723, 32078101, 32222218, 32705716, 32849833, 33189212, 33333331
Offset: 1

Views

Author

Paolo P. Lava, Jul 08 2016

Keywords

Comments

Seven pairs of consecutive numbers: 27150160 and 27150161; 28888885 and 28888886; 29372382 and 29372383; 35555551 and 35555552; 37777774 and 37777775; 40483492 and 40483493; 41111107 and 41111108.
Two sets of three consecutive numbers: 34444440, 34444441 and 34444442; 39999995, 39999996 and 39999997.

Examples

			11111110^7 = 20907501177620218737880174500399224623868710000000 and
2 + 0907501 + 1776202 + 1873788 + 0174500 + 3992246 + 2386871 + 0000000 = 11111110.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local a,b,n;
    for n from 0 to q do a:=n^h; b:=0; while a>0 do b:=b+(a mod 10^h); a:=trunc(a/10^h); od;
    if n=b then print(n); fi; od; end: P(10^6,7);

A277397 Like 4-white numbers but with blocks of 4 starting at left.

Original entry on oeis.org

0, 1, 1000, 11110, 14638, 15628, 17170, 18217, 19305, 19999, 21649, 22320, 25234, 29041, 30195, 31428
Offset: 1

Views

Author

Paolo P. Lava, Oct 13 2016

Keywords

Examples

			14638^4 = 45912080296849936 and 4591 + 2080+ 2968 + 4993 + 6 = 14638.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local a,b,c,d,n; print(0); for n from 1 to q do
    a:=n^h; d:=ilog10(n^h)+1; c:=d-h*trunc(d/h); b:=0;
    while a>0 do b:=b+(a mod 10^c); a:=trunc(a/10^c); c:=h; od;
    if n=b then print(n); fi; od; end: P(10^15,4);

A277398 Like 5-white numbers but with blocks of 5 starting at left.

Original entry on oeis.org

1, 10000, 73440, 95120, 218510, 221220, 222220, 242900, 245610, 289970, 344070
Offset: 1

Views

Author

Paolo P. Lava, Oct 13 2016

Keywords

Examples

			73440^5 = 2136305413264402022400000 and 21363 + 05413 + 26440 + 20224 + 00000 = 73440.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local a,b,c,d,n; print(0); for n from 1 to q do
    a:=n^h; d:=ilog10(n^h)+1; c:=d-h*trunc(d/h); b:=0;
    while a>0 do b:=b+(a mod 10^c); a:=trunc(a/10^c); c:=h; od;
    if n=b then print(n); fi; od; end: P(10^15,5);

A277400 Like 7-white numbers but with blocks of 7 starting at left.

Original entry on oeis.org

0, 1, 1000000, 20585070, 25104356, 25975583, 27483737, 27940490, 27941490, 28133416, 29069509, 32345773, 32482961, 32581773, 33332330, 34310934, 34676272, 35530163, 35707886, 36067139, 41716867, 42163087, 42568703, 44444440, 47745130
Offset: 1

Views

Author

Paolo P. Lava, Oct 13 2016

Keywords

Examples

			20585070^7 = 1566269305839650871270449961448347855098390430000000 and 1566269 + 3058396 + 5087127 + 0449961 + 4483478 + 5509839 + 0430000 + 000 = 20585070.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local a,b,c,d,n; print(0); for n from 1 to q do
    a:=n^h; d:=ilog10(n^h)+1; c:=d-h*trunc(d/h); b:=0;
    while a>0 do b:=b+(a mod 10^c); a:=trunc(a/10^c); c:=h; od;
    if n=b then print(n); fi; od; end: P(10^15,7);

A277399 Like 6-white numbers but with blocks of 6 starting at left.

Original entry on oeis.org

0, 1, 100000, 1705330, 1818180, 1941030, 2046807, 2227770, 2285010, 2414880, 2598400, 2694600, 2727270, 2728270, 2758239, 2760940, 2857140, 2890810, 2979315, 3040660, 3085911, 3317050, 3541014, 3636460, 4543174
Offset: 1

Views

Author

Paolo P. Lava, Oct 13 2016

Keywords

Examples

			1705330^6 = 24595213291709423201966052256969000000 and 245952 + 132917 + 094232 + 019660 + 522569 + 690000 + 00 = 1705330.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local a,b,c,d,n; print(0); for n from 1 to q do
    a:=n^h; d:=ilog10(n^h)+1; c:=d-h*trunc(d/h); b:=0;
    while a>0 do b:=b+(a mod 10^c); a:=trunc(a/10^c); c:=h; od;
    if n=b then print(n); fi; od; end: P(10^15,7);
  • Mathematica
    Select[Range[0,4544000],Total[FromDigits/@Partition[IntegerDigits[#^6],UpTo[6]]]==#&] (* Harvey P. Dale, Dec 25 2023 *)

A308408 a(n) is the smallest k that is equal to the sum of the digits of k*(k+1)*...*(k+n-1) in base 10^n, or -1 if such a number does not exist.

Original entry on oeis.org

1, 33, -1, 10692, 74016, 1153845, 19999998, 373722624, 3025660311, 39999999996, -1
Offset: 1

Views

Author

Paolo P. Lava, May 25 2019

Keywords

Comments

Partition the product of n consecutive integers, from k to k+n-1, into blocks of n digits starting from right. Sequence lists, for each n, the first number k of the least product whose sum of blocks is equal to k, or -1 if such a number does not exist.
a(12) <= 6*10^12 - 6, a(13) <= 4*10^13 - 4, a(14) <= 6*10^14 - 6, a(15) <= 8*10^15 - 8, a(16) <= 6*10^16 - 6, a(17) <= 8*10^17 - 8, a(18) <= 8*10^18 - 8. - Giovanni Resta, May 25 2019

Examples

			a(2) = 33 because 33*34 = 1122 and 11 + 22 = 33.
a(4) = 10692 because 10692*10693*10694*10695 = 13076137707585480 and 5480 + 758 + 1377 + 3076 + 1 = 10692.
		

Crossrefs

Programs

  • Maple
    P:=proc(q) local a, b,c,j,k,n,x; c:=1; for n from 1 to q do x:=0:
    for k from c to q do a:=mul(j,j=k..k+n-1); b:=0; while a>0 do
    b:=b+(a mod 10^n); a:=trunc(a/10^n); od; if k>b then x:=x+1;
    else if k
    				

Extensions

a(8)-a(11) from Giovanni Resta, May 25 2019
Showing 1-6 of 6 results.