cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274845 a(0)=1, a(1)=0, a(4n+2) = a(4n+3) = a(4n+5) = (4^(n+1) +(-1)^n)/5, a(4n+4) = (2*4^(n+1) -3*(-1)^n)/5.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 3, 7, 3, 13, 13, 25, 13, 51, 51, 103, 51, 205, 205, 409, 205, 819, 819, 1639, 819, 3277, 3277, 6553, 3277, 13107, 13107, 26215, 13107, 52429, 52429, 104857, 52429, 209715, 209715, 419431, 209715, 838861, 838861, 1677721, 838861, 3355443
Offset: 0

Views

Author

Paul Curtz, Jul 08 2016

Keywords

Comments

Antidiagonals of the array in A274613 written as a triangle:
1,
0, 1/2,
0, 1/2, 1/4,
0, 0, 1/2, 1/8,
0, 0, 1/4, 3/8, 1/16,
... .
a(n) is the numerators of the antidiagonal sums i.e. 1, 0, 1/2, 1/2, 1/4, 1/2, 3/8, 3/8, 7/16, 3/8, 13/32, 13/32, 25/64, 13/32, ... = a(n)/b(n).
The denominators b(n) are A173300(n).
a(0)+a(1) = 1, a(4n+2) +a(4n+3) +a(4n+4) +a(4n+5) = 4, 16, 64, 256, ... .

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,3,0,0,0,4}, {1,0,1,1,1,1,3,3}, 50] (* G. C. Greubel, Jul 08 2016 *)
  • PARI
    Vec((1+x^2+x^3-2*x^4+x^5)/((1-2*x^2)*(1+2*x^2)*(1+x^4)) + O(x^60)) \\ Colin Barker, Jul 22 2016

Formula

a(4n) = A102900(n), a(4n+1) = A015521(n), a(4n+2) = a(4n+3) = A015521(n+1).
a(n) = 3*a(n-4) + 4*a(n-8). - G. C. Greubel, Jul 08 2016
G.f.: (1+x^2+x^3-2*x^4+x^5) / ((1-2*x^2)*(1+2*x^2)*(1+x^4)). - Colin Barker, Jul 22 2016

Extensions

More terms from Colin Barker, Jul 22 2016