A274845 a(0)=1, a(1)=0, a(4n+2) = a(4n+3) = a(4n+5) = (4^(n+1) +(-1)^n)/5, a(4n+4) = (2*4^(n+1) -3*(-1)^n)/5.
1, 0, 1, 1, 1, 1, 3, 3, 7, 3, 13, 13, 25, 13, 51, 51, 103, 51, 205, 205, 409, 205, 819, 819, 1639, 819, 3277, 3277, 6553, 3277, 13107, 13107, 26215, 13107, 52429, 52429, 104857, 52429, 209715, 209715, 419431, 209715, 838861, 838861, 1677721, 838861, 3355443
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 3, 0, 0, 0, 4).
Programs
-
Mathematica
LinearRecurrence[{0,0,0,3,0,0,0,4}, {1,0,1,1,1,1,3,3}, 50] (* G. C. Greubel, Jul 08 2016 *)
-
PARI
Vec((1+x^2+x^3-2*x^4+x^5)/((1-2*x^2)*(1+2*x^2)*(1+x^4)) + O(x^60)) \\ Colin Barker, Jul 22 2016
Formula
a(n) = 3*a(n-4) + 4*a(n-8). - G. C. Greubel, Jul 08 2016
G.f.: (1+x^2+x^3-2*x^4+x^5) / ((1-2*x^2)*(1+2*x^2)*(1+x^4)). - Colin Barker, Jul 22 2016
Extensions
More terms from Colin Barker, Jul 22 2016
Comments