cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274900 Number of (not necessarily proper) vertex colorings of the truncated cube using at most n colors.

Original entry on oeis.org

1, 352744, 5884691769, 5864100125056, 1241764261950625, 98716288267057896, 3991275742289356969, 98382635628154476544, 1661800900370941653561, 20833333346104183585000, 205202764127643987528241, 1656184316900213910466944, 11308349383297867766174569
Offset: 1

Views

Author

Marko Riedel, Jul 10 2016

Keywords

Comments

Also the number of vertex colorings of the rhombicuboctahedron up to rotation and reflection. - Peter Kagey, Nov 27 2024

Examples

			Cycle index: 1/48*s[1]^24 + 1/8*s[2]^10*s[1]^4 + 13/48*s[2]^12 + 1/6*s[3]^8 + 1/4*s[4]^6 + 1/6*s[6]^4.
		

Crossrefs

Programs

  • Magma
    [1/48*n^24+1/8*n^14+13/48*n^12+1/6*n^8+1/4*n^6+1/6*n^4: n in [1..20]]; // Vincenzo Librandi, Jul 11 2016
    
  • Mathematica
    Table[1/48 n^24 + 1/8 n^14 + 13/48 n^12 + 1/6 n^8 + 1/4 n^6 + 1/6 n^4, {n, 25}] (* Vincenzo Librandi, Jul 11 2016 *)
  • PARI
    a(n) = 1/48*n^24 + 1/8*n^14 + 13/48*n^12 + 1/6*n^8 + 1/4*n^6 + 1/6*n^4 \\ Felix Fröhlich, Jul 12 2016

Formula

a(n) = 1/48*n^24 + 1/8*n^14 + 13/48*n^12 + 1/6*n^8 + 1/4*n^6 + 1/6*n^4 = n^4*(n^20 + 6*n^10 + 13*n^8 + 8*n^4 + 12*n^2 + 8)/48.