cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274901 Number of (not necessarily proper) face colorings of the truncated cube using at most n colors.

Original entry on oeis.org

1, 554, 109152, 5747200, 128538250, 1640929626, 14167981324, 91769978112, 477063389475, 2084653722250, 7914860972876, 26756396132544, 82046630783572, 231537699283450, 608260629969000, 1501341920229376, 3508131297671589, 7809071314434282, 16646760371737000
Offset: 1

Views

Author

Marko Riedel, Jul 10 2016

Keywords

Examples

			Cycle index: 1/48*s[1]^14 + 1/8*s[1]^6*s[2]^4 + 1/16*s[2]^5*s[1]^4 + 1/16*s[2]^6*s[1]^2 + 7/48*s[2]^7 + 1/6*s[1]^2*s[3]^4 + 1/8*s[4]^3*s[1]^2 + 1/8*s[4]^3*s[2] + 1/6*s[6]^2*s[2].
		

Crossrefs

Programs

  • Magma
    [1/48*n^14+1/8*n^10+1/16*n^9+1/16*n^8+7/48*n^7+1/6*n^6+1/8*n^5+ 1/8*n^4+1/6*n^3: n in [1..20]]; // Vincenzo Librandi, Jul 11 2016
  • Mathematica
    Table[1/48 n^14 + 1/8 n^10 + 1/16 n^9 + 1/16 n^8 + 7/48 n^7 + 1/6 n^6 + 1/8 n^5 + 1/8 n^4 + 1/6 n^3, {n, 25}] (* Vincenzo Librandi, Jul 11 2016 *)

Formula

a(n) = 1/48*n^14 + 1/8*n^10 + 1/16*n^9 + 1/16*n^8 + 7/48*n^7 + 1/6*n^6 + 1/8*n^5 + 1/8*n^4 + 1/6*n^3 = n^3*(n + 1)*(n^10 - n^9 + n^8 - n^7 + 7*n^6 - 4*n^5 + 7*n^4 + 8*n^2 - 2*n + 8)/48.