A274962 Numbers n such that sigma(n) and sigma(n) + 2 are both primes.
2, 2401, 19356878641, 46904541018721, 119601542190001, 360371335935601, 16472757578830081, 26835157974988801, 59879777952495601, 147669280778756881, 170589096345900241, 219660193449998401, 1103765757989399761, 1515946818108402241, 2044393722679974961, 2608728003079029841, 2805689752523610241, 3071293995460971361, 4537323492222149281, 9583348094642219041, 9982134924573725761
Offset: 1
Keywords
Examples
2401 is in the sequence because sigma(2401) = 2801 and sigma(2401) + 2 = 2803 are both primes.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10337
Programs
-
Magma
[n: n in[1..10^7] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n)+2)]
-
PARI
isok(n) = isprime(s=sigma(n)) && isprime(s+2); \\ Michel Marcus, Jul 14 2016
-
Python
from sympy import isprime, divisor_sigma A274962_list = [2]+[n for n, s in ((d**2, divisor_sigma(d**2)) for d in range(1,10**3)) if isprime(s) and isprime(s+2)] # Chai Wah Wu, Jul 13 2016
Extensions
a(4)-a(21) from Chai Wah Wu, Jul 13 2016
Comments