cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A263101 a(n) = F(F(n)) mod F(n), where F = Fibonacci = A000045.

Original entry on oeis.org

0, 0, 1, 2, 0, 5, 12, 5, 33, 5, 1, 0, 232, 233, 55, 5, 1596, 2563, 1, 5, 987, 10946, 28656, 0, 0, 75025, 189653, 89, 1, 6765, 1, 5, 6765, 1, 9227460, 0, 24157816, 1, 63245985, 5, 1, 267914275, 433494436, 4181, 1134896405, 1, 2971215072, 0, 7778741816, 75025
Offset: 1

Views

Author

Alois P. Heinz, Oct 09 2015

Keywords

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
              `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
    a:= n-> p(<<0|1>, <1|1>>, F(n)$2)[1, 2]:
    seq(a(n), n=1..50);
  • Mathematica
    F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
    p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
    a[n_] := p[{{0, 1}, {1, 1}}, F[n], F[n]][[1, 2]];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 29 2024, after Alois P. Heinz *)
  • PARI
    alist(nn)= my(f=fibonacci); [ f(f(n))%f(n) |n<-[1..nn] ]; \\ Ruud H.G. van Tol, Dec 13 2024

Formula

a(n) = A007570(n) mod A000045(n).

A263112 a(n) = F(F(n)) mod n, where F = Fibonacci = A000045.

Original entry on oeis.org

0, 1, 1, 2, 0, 3, 2, 2, 1, 5, 1, 0, 8, 13, 10, 2, 12, 15, 5, 10, 1, 1, 1, 0, 0, 25, 1, 2, 5, 15, 27, 2, 10, 33, 20, 0, 1, 1, 34, 10, 40, 21, 18, 2, 10, 1, 1, 0, 1, 25, 1, 2, 16, 21, 5, 26, 37, 1, 7, 0, 33, 27, 1, 2, 40, 21, 5, 2, 1, 15, 1, 0, 46, 1, 25, 2, 68
Offset: 1

Views

Author

Alois P. Heinz, Oct 09 2015

Keywords

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
              `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
    a:= n-> p(<<0|1>, <1|1>>, F(n), n)[1, 2]:
    seq(a(n), n=1..80);
  • Mathematica
    F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
    p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
    a[n_] := p[{{0, 1}, {1, 1}}, F[n], n][[1, 2]];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Oct 29 2024, after Alois P. Heinz *)

Formula

a(n) = A007570(n) mod n.

A338889 a(n) = L(L(L(n))) mod L(L(n)), where L = Lucas numbers = A000032.

Original entry on oeis.org

1, 0, 3, 1, 1, 1, 0, 1, 1, 29, 7, 1, 19679776435706023589554718882448088434898811874077010905231927243854, 1, 7
Offset: 0

Views

Author

Alois P. Heinz, Nov 14 2020

Keywords

Comments

a(21) = 2992285359..7163788371 has 5090 decimal digits.

Crossrefs

Programs

  • Maple
    b:= proc(n) local r, M, p; r, M, p:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
          do if irem(p, 2, 'p')=1 then r:=
            `if`(nargs=1, r.M, r.M mod args[2]) fi;
             if p=0 then break fi; M:=
            `if`(nargs=1, M.M, M.M mod args[2])
          od; (r.<<2, 1>>)[1$2]
        end:
    a:= n-> (h-> b(h$2) mod h)(b(b(n))):
    seq(a(n), n=0..15);

Formula

a(n) = A262361(n) mod A005371(n).
Showing 1-3 of 3 results.