A274996 a(n) = F(F(F(n))) mod F(F(n)), where F = Fibonacci = A000045.
0, 0, 0, 1, 0, 5, 232, 987, 1, 5, 1, 0, 2211236406303914545699412969744873993387956988652, 2211236406303914545699412969744873993387956988653, 139583862445
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..19
Programs
-
Maple
F:= proc(n) local r, M, p; r, M, p:= <<1|0>, <0|1>>, <<0|1>, <1|1>>, n; do if irem(p, 2, 'p')=1 then r:= `if`(nargs=1, r.M, r.M mod args[2]) fi; if p=0 then break fi; M:= `if`(nargs=1, M.M, M.M mod args[2]) od; r[1, 2] end: a:= n-> (h-> F(h$2))(F(F(n))): seq(a(n), n=1..15);