A338736 a(n) = L(L(n)) mod n, where L = Lucas numbers = A000032.
0, 0, 1, 1, 4, 0, 3, 7, 7, 4, 10, 3, 9, 10, 7, 15, 12, 0, 10, 9, 7, 4, 22, 3, 1, 4, 7, 1, 4, 18, 30, 31, 7, 4, 29, 15, 1, 34, 34, 39, 35, 24, 29, 29, 7, 4, 46, 3, 1, 4, 7, 29, 29, 0, 21, 55, 7, 54, 35, 3, 45, 4, 7, 63, 64, 36, 2, 29, 7, 4, 6, 3, 43, 4, 7, 29
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
b:= proc(n) local r, M, p; r, M, p:= <<1|0>, <0|1>>, <<0|1>, <1|1>>, n; do if irem(p, 2, 'p')=1 then r:= `if`(nargs=1, r.M, r.M mod args[2]) fi; if p=0 then break fi; M:= `if`(nargs=1, M.M, M.M mod args[2]) od; (r.<<2, 1>>)[1$2] end: a:= n-> (f-> b(f, n) mod n)(b(n)): seq(a(n), n=1..80);
Formula
a(n) = A005371(n) mod n.
Comments