cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274998 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(3*k-2)).

Original entry on oeis.org

1, 1, 9, 30, 106, 339, 1106, 3355, 10102, 29358, 83908, 234394, 644286, 1739933, 4631675, 12153197, 31485413, 80576160, 203902261, 510490213, 1265353568, 3106771717, 7559844833, 18239351931, 43650061720, 103657177941, 244346681972, 571930478187, 1329655624297, 3071230379625, 7049750442386, 16085170634548, 36489192684910
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 30 2016

Keywords

Comments

Euler transform of the octagonal numbers (A000567).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d^2*(3*d-2), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 02 2016
  • Mathematica
    nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (3 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
  • Python
    from sympy import divisors
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return 1 if n==0 else sum(sum(d**2*(3*d - 2) for d in divisors(j))*a(n - j) for j in range(1, n + 1))//n
    print([a(n) for n in range(51)]) # Indranil Ghosh, Aug 06 2017, after Maple code

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(3*k-2)).
a(n) ~ exp(4*Pi*n^(3/4) / (3*5^(1/4)) - 2*Zeta(3) * sqrt(5*n) / Pi^2 - 10*Zeta(3)^2 * (5*n)^(1/4) / Pi^5 - 200*Zeta(3)^3 / (3*Pi^8) - 3*Zeta(3) / (4*Pi^2) - 1/6) * A^2 / (2^(3/2) * 5^(1/12) * Pi^(1/6) * n^(7/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 08 2017