A294655
Expansion of Product_{k>=1} 1/((1 - x^(2*k-1))^(k*(3*k-2))*(1 - x^(2*k))^(k*(3*k+2))).
Original entry on oeis.org
1, 1, 6, 14, 45, 106, 290, 683, 1698, 3918, 9179, 20640, 46444, 101819, 222092, 475886, 1012270, 2124725, 4425195, 9118705, 18648048, 37797126, 76062443, 151889787, 301296200, 593593192, 1162276735, 2261819285, 4376578818, 8421295585, 16118902083, 30694325652, 58164428059
Offset: 0
-
nmax = 32; CoefficientList[Series[Product[1/((1 - x^(2 k - 1))^(k (3 k - 2)) (1 - x^(2 k))^(k (3 k + 2))), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (d^2 + d - Ceiling[d/2]^2), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]
A318118
a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^3)).
Original entry on oeis.org
1, 1, 3, 10, 40, 150, 616, 2456, 10102, 41400, 171526, 712111, 2972115, 12434993, 52195414, 219567909, 925704792, 3909841659, 16541598215, 70085877919, 297347922785, 1263046810334, 5370930049915, 22861883482838, 97402827429118, 415332438952517, 1772380322197432
Offset: 0
-
Table[SeriesCoefficient[Exp[Sum[x^k (1 + (n - 3) x^k)/(k (1 - x^k)^3), {k, 1, n}]], {x, 0, n}], {n, 0, 26}]
A294692
Expansion of Product_{k>=1} 1 / (1 - x^k)^(k*(3*k + 2)).
Original entry on oeis.org
1, 5, 31, 148, 667, 2754, 10823, 40393, 145085, 502780, 1690603, 5530649, 17658430, 55141520, 168751779, 506933980, 1496999360, 4350994324, 12460305177, 35192973824, 98116587875, 270220568883, 735668636567, 1981082952258, 5279879097853, 13933764841202
Offset: 0
-
N:= 50:
S:= series(mul(1/(1-x^k)^(k*(3*k+2)), k=1..N),x,N+1):
seq(coeff(S,x,n),n=0..N); # Robert Israel, Nov 07 2017
-
nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^(k*(3*k+2)), {k, 1, nmax}], {x, 0, nmax}], x]
A317021
Expansion of Product_{k>=1} 1/(1 - x^k)^((3*k-1)*binomial(k+2,3)/2).
Original entry on oeis.org
1, 1, 11, 51, 216, 861, 3477, 13367, 50377, 184667, 664484, 2345230, 8142476, 27825576, 93750686, 311682789, 1023547782, 3322634928, 10669887669, 33916213669, 106776876109, 333111724130, 1030264525744, 3160359629535, 9618807643826, 29057370625281, 87153154537437
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(add(
(3*d-1)*binomial(d+2, 3)/2*d, d=numtheory
[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jul 19 2018
-
nmax = 26; CoefficientList[Series[Product[1/(1 - x^k)^((3 k - 1) Binomial[k + 2, 3]/2), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 26; CoefficientList[Series[Exp[Sum[x^k (1 + 5 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (3 d - 1)/12, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 26}]
Showing 1-4 of 4 results.
Comments